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Preface

AmEC 2024 – Automotive meets Electronics & Control
Last year we decided to merge the two conferences Automotive meets Electronics and AUTOREG. Both 
conferences share many topics but there were also different foci. This joint conference covers a wider field.

The first core field to mention is on applications of artificial intelligence/machine learning (AI/ML) to many 
different domains. Obviously, the existing algorithms are not sufficient to solve the problem of dynamically 
changing environments, whereas AI/ML with their inherent flexibility are much more promising. The second 
core field is trajectory planning, where of course a strong interaction exists with AI/ML. Additional topics 
cover reliability, fuel cells, sensor technology and new computer architectures which become important for 
automotive.

The AmEC is a conference featuring scientific papers as well as industrial keynotes, providing an excellent 
mixture of both worlds and thus the unique opportunity to an effective cross fertilization.

Automotive meets Electronics & Control and we are looking forward to meeting you in Dortmund!

Your Conference Chairs

Prof. Dr. Martin Keller    Prof. Dr. Georg Schildbach  Dr.-Ing. Michael G. Wahl 
Fachhochschule Südwestfalen   Universität zu Lübeck   Universität Siegen  
           Digital University Kerala



4

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

Program Committee

Scientific conference management
G. Schildbach, Universität zu Lübeck
M. Keller, Fachhochschule Südwestfalen
M. Wahl, Universität Siegen & DUK, Kerala

Organizational conference management
Ronald Schnabel, VDE/VDI GMM, Offenbach am Main

Programmkomitee
D. Abel, RWTH Aachen University
B. Alt, Robert Bosch GmbH, Renningen
A. Becciu, Nuraxys GmbH, Overath
K. Belhoula, Continental Automotive Technologies GmbH, Wetzlar
N. Beringer, CARIAD SE, Nürnberg
T. Bertram, Technische Universität Dortmund
R. Denkelmann, Aptiv Services Deutschland GmbH, Wiehl
P. Farber, Robert Bosch GmbH, Reutlingen
M. Fohlmeister, Cognizant Mobility GmbH
S. Frei, Technische Universität Dortmund
E. Kamau, Technische Hochschule Köln
M. Keller, Fachhochschule Südwestfalen, Hagen
L. Kiltz, ZF Friedrichshafen AG, Friedrichshafen
T. Liebetrau, Infineon AG, Nürnberg
R. Montino, Elmos AG, Dortmund
R. Obermaisser, Universität Siegen
H. Pu, XCMG European Research Center GmbH
C. Ress, Consultant, Aachen
S. Sattler, Friedrich-Alexander-Universität, Erlangen-Nürnberg
A. Schäfer, KYOCERA AVX Components GmbH, Werne
G. Schildbach, Universität zu Lübeck
R. Schnabel, VDE/VDI GMM, Offenbach am Main
D. Schramm, Universität Duisburg-Essen, Duisburg
A. Stockem Novo, Hochschule Ruhr-West, Mühlheim
N. Wagner, Adam Opel AG, Rüsselsheim
M. Wahl, Universität Siegen & DUK, Kerala
R. Wille, Consultant, Bönen
A. Zlocki, fka GmbH, Aachen



5

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

Contents

Automotive Architectures & Machine Learning
Session Chair: Georg Schildbach

01 Physics Informed Deep Learning for Motion Prediction in Autonomous Driving............................ 7
P. Tischmann, R. Baumann, A. Stockem Novo, University of Applied Sciences Ruhr West,  
Mülheim a. d. Ruhr

02 Confidence Tuned Localization through Learning in the Loop ........................................................ 13
S. Schütte, T. Bertram, TU Dortmund; M. Kuhn, ZF Automotive Germany GmbH, Düsseldorf

Advanced Control Strategies & Trajectory Planning
Session Chair: André Schäfer

03 Application of Basis-Splines for Trajectory Planning in Highway Scenarios .................................. 18
P. Dorpmüller, T. Bertram, TU Dortmund; T. Schmitz, N. Bejagam, ZF Automotive Germany  
GmbH, Düsseldorf

04 On the Design of Interaction-Aware SCMPC for Highway Merging Scenarios ............................. 24
R. Kensbock, G. Schildbach, University of Lübeck

Poster Session
Session Chair: Martin Keller

05 Coaction between Automobiles and Mobile Robots - Interoperability for Affordable Last  
Mile Delivery Solutions .......................................................................................................................... 30
M. Y. Khandelwal, S. Tendulkar, G. A. Kolbai, F. Schrödel, Schmalkalden University of Applied
Sciences, Schmalkalden

06 AI-Based Localization and Classification of Visual Anomalies on Semiconductor Devices ........... 36
M. K. Le, J. Z. J. Chia, D. Peskes, Elmos Semiconductor SE, Dortmund, 

07 Machine learning for improving the trustworthiness of sensors ....................................................... 41
G. Hussain, L. G. Thekkumthala, P. A. William, M. G. Wahl, University of Siegen

08 Vision-based Autonomous Trajectory Drifting using Deep Reinforcement Learning .................... 47
F. Domberg, B. Barkow, G. Schildbach, University of Lübeck

Infrastructure and Safety
Session Chair: Bendikt Alt

09 Challenges of Infrastructures for autonomous Buses in Cities: A review ........................................ 53
A. Becciu, Nuraxys GmbH, Overath; E. N. Kamau, University of Applied Sciences Cologne



6

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

10 Automated failure and tolerance analysis as a combined consideration for the proof of 
safety of electronic systems .................................................................................................................... 58
R. Müller-Hainbach, L. Ergün, S. Butzmann, University of Wuppertal

Machine Learning/Deep Learning in the automotive context
Session Chair: Alessandro Becciu

11 CSAM anomaly detection with AI ........................................................................................................ 63
J. C. Z. Jie, R. Krumm, Elmos Semiconductor SE, Dortmund

12 Investigation of the real-time feasibility of NMPC for air-path control in automotive fuel 
cell systems .............................................................................................................................................. 67
T. A. Nguyen, V. Neisen, D. Abel, RWTH Aachen University, Aachen

13 Time-Triggered Organic Computing Architecture for Autonomous Driving Vehicles 
Using List Scheduling ............................................................................................................................. 73
M. Qosja, S. Meckel, R. Obermaisser, University of Siegen

Future of Transportation
Session Chair: Edwin Kamau

14 Robust Navigation of Autonomous Transport Units in the Extractive Industry ............................ 79
D. Benz, D. Abel, RWTH Aachen University, Aachen

Innovations in Electronics

15 Self-Locked Asynchronous Controller for RISC-V Architecture on FPGA .................................... 84
F. Deeg, S. M. Sattler, Friedrich-Alexander-University Erlangen-Nuremberg

16 Integration of a 77GHz automotive radar system into plastic surfaces using MID-technology .... 89
T. Mager, J. Diri, Fraunhofer Research Institute for Mechatronic Systems Design IEM, Paderborn;
P. Kneuper, S. Kruse, C. Scheytt, Paderborn University, Paderborn



Physics Informed Deep Learning for Motion Prediction in Au-
tonomous Driving
B. Sc. Patrik Tischmanna*, M. Sc. Robin Baumanna, and Prof. Dr. Anne Stockem Novoa

aUniversity of Applied Sciences Ruhr West, Institute of Computer Science, Duisburger Str. 100, 45479 Mülheim a. d.

Ruhr, Germany
*Corresponding author: patrik.tischmann@edu.ruhr-uni-bochum.de

Abstract

This paper examines a physics-informed artificial neural network and its ability to learn to forecast car motion sequences

using recorded real-world traffic sequences from the Argoverse dataset. It implements the Intelligent Driving Model

(IDM), which models straight driving and is derived analytically and combines a data-driven model, a Long-Short-Term

Memory (LSTM) neural network at the loss function level. Three networks, the standalone IDM, the LSTM Network,

and their combination, a Physics-Informed Neural Network (PINN), are examined and compared in their performance

and convergence rate, as well as inspected at the level of individual, visualized traffic scenes. Furthermore, this work

covers the implementation details and challenges for the IDM, the combined Physics-Informed Neural Network, and how

the data was prepared. We find that the inclusion of the simpler IDM into the training of the LSTM network yields a

better initial performance as well as a stabilized model performance during training, we also find, however, that the IDM

requires more extensive integration and preparation for working with the chosen Dataset since its simplicity does not lend

itself to easily provide applicable collocation points and falls behind a purely data-driven approach.

1 Introduction

Deep learning has become the predominant method for

tackling many high-dimensional problems, including the

topic of autonomous driving, where deep learning-based

models have enabled researchers and increasingly industry

to push the feasible tasks from the simulation of general

traffic patterns to multisecond-long predictions of highly

complex traffic scenarios and the paths taken by the vehi-

cles involved [1]. However, there are still many caveats to

these systems, especially concerning the use of these mod-

els in real life; For example, how to verify that these mod-

els behave correctly in all possible scenarios remains an

active area of research[10]. This is made especially clear

when it can be observed that model performance differs

significantly when tested on different datasets, raising the

question of how well they would perform on unseen data

in a real-life scenario[1].

As a result of these efforts to create more robust and ex-

plainable models, the idea of augmenting data-driven Deep

Learning (DL) models with additional information that can

provide stronger guidance for the model during and after

training, or even more explicitly encode rules of the world

that might be too subtle to be reliably picked up by the

models during regular training, has steadily gained popu-

larity.

Following these findings, we aim to examine the qualita-

tive differences that are achieved by augmenting the cur-

rently popular data-driven DL methods with a symbolic

model, which, in contrast to data-driven models, are ana-

lytically derived by experts. To this end, this paper pursues

several complementary goals: First, design and implement

the IDM in a manner that integrates well with the used Ar-

goverse dataset. Second, the requirements of the IDM for

the given data must be considered to increase the likelihood

that the IDM’s predictions are at worst neutral training in-

formation for the reference LSTM model, which is being

augmented. And third combine the IDM and the LSTM

model into a PINN model, where the LSTM component is

guided in part by the IDM’s predictions during training. To

ensure a successful implementation of the IDM, careful at-

tention was paid to the data and its format; thus, we will

explain the considerations we had to make.

In this paper, we introduce the IDM, LSTM, and PINN

models and apply the latter two to the task of traffic scene

analysis. We assess and compare their performance, con-

cluding with a discussion of potential avenues for future

research improvements.

2 Related Work

The idea of including classical symbolic models in the

training of DL models as a form of knowledge integration

was first presented in [3] and showed that it can improve

the generalization of the data-driven model in fields where

the underlying dynamics are already understood. This was

used to help in few data regiments.

Calibration of the model parameters can be observed in [7]

to align the symbolic model parameters more closely with

the underlying data and help improve the model by captur-

ing parameters such as common acceleration and decelera-

tion, and driving distances between vehicles directly from
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the data rather than a priori.

The PINN network as discussed in this work diverges

somewhat from the stricter usage of the term that can be

found in surveys such as [9] in which PINN refers to the

special physics-informed networks used to solve equation

systems such as PDEs, fractional equations and integral

differential equations in a mesh-free way. Instead, the

PINN acronym is used here to refer to a network that is

augmented with additional knowledge of the general phys-

ical behavior of vehicles, these general physical behaviors

themselves being encoded in the employed IDM. In this

manner, the presented PINN strictly speaking occupies a

space between the algebraic representation and the simu-

lation representation mentioned in [8], as the knowledge

is presented as a full simulation of the scenario according

to the symbolic model which is then used as a collocation

point for the DL model.

3 Method

3.1 Data
The Argoverse[4] dataset employed in this work is an

open dataset designed for autonomous driving simulation.

The dataset includes recordings of road scenarios in Mi-
ami (spanning 204 km) and Pittsburgh (spanning 86 km),

totaling more than 324,000 high-resolution traffic scenar-

ios. These scenarios encompass a variety of urban envi-

ronments such as dense city streets, highways, and inter-

sections. Each scenario provides a 2D, birds-eye view of

a recorded driving scenario, with a duration of 5 seconds

and a sampling rate of 10Hz. In order to accommodate the

IDM’s limited capabilities, the dataset was filtered based

on the amount of turning present in each scenario.

This filtering process involves fitting a second-degree

polynomial to the ground truth trajectories from which the

curvature is determined and graded. This grading helps de-

termine whether a scenario involves a straight drive, a left

turn, or a right turn. While this method is not flawless,

it was employed to establish a baseline for the scenarios

used, in order to minimize the inclusion of data that the

IDM cannot reasonably model or approximate due to its

design.

3.2 Models
3.2.1 Intelligent Driving Model
The IDM is a mathematically devised model to emulate

the driving behaviors of cars by computing accelerations

based on predefined parameters and the behavior of traffic

driving in front of the respective car. Although the IDM

was originally introduced to forecast the acceleration of all

road users, within the context of our study, we exclusively

employ it to predict the acceleration of a single vehicle that

is being tracked, namely, the ego vehicle. The IDM was

first introduced in [6] and was further elaborated in [5].

The IDM is a microscopic Car Following Model (CFM) for

single-lane traffic simulation, first used to match and pre-

dict data recorded on German highways. It is single-lane

because it does not model lane-changing behavior, and it is

microscopic because it models the movements of discrete

vehicles and their accelerations as opposed to macroscopic

approaches, which model traffic in terms of abstractions

like flow or density. The IDM can be divided into three

equations, two to define the net distance sα and the ap-

proaching rate Δvα(t), while the third formula for v̇α de-

notes the final calculated acceleration.

v̇α = a

(
1−
(

vα

v0

)δ
−
(

s∗(vα ,Δvα)

sα

)2
)

(1)

with sα and Δvα(t) as :

sα = xα−1 − xα − lα (2)

Δvα(t) := vα(t)− vα−1(t) (3)

The velocity formula in (1) computes the acceleration by

scaling the desired maximum acceleration a with the free

road term
(

vα
v0

)δ
that is controlled by the current and max-

imum velocity, as well as an acceleration exponent and the

congestion traffic term
(

s∗(vα ,Δvα )
sα

)2
which takes into ac-

count the desired and actual distance from the leading ve-

hicle. One can see that in the case of no or distant traf-

fic in front of the ego vehicle (when sα is large), the traf-

fic term will vanish, leaving only the free-road term to in-

form the acceleration. In this case, the remaining function

a
(

1−
(

vα
v0

)δ
)

is a decreasing function for the case where

the current velocity v0 approaches the desired maximum

velocity vα . The added acceleration exponent δ controls

the acceleration fall-off rate, where according to [5] "the
limiting case δ → ∞ corresponds to approaching v0 with
a constant acceleration a, while δ = 1 corresponds to an
exponential relaxation to the desired velocity"; it is com-

monly set to 4.

s∗(v,Δv) = s0 + s1

√
v
v0

+T v+
vΔv

2
√

ab
(4)

In the case of nearby traffic in front (sα lower than s∗), the

latter term dominates the equation, which includes the de-

sired and actual distance from the leading vehicle. This de-

sired distance s∗ is calculated with the formula seen in (4).

Where the minimum distance at standstill s0 is added to the

desired time headway T scaled by the current velocity to

produce a safe driving distance to the leader proportional

to the velocity and, last, by the term vΔv
2
√

ab
which induces

the behavior of reducing the velocity difference while not

exceeding the desired acceleration or deceleration bound-

aries.

Note that the authors of the original IDM formulation in

[5] set s1 = 0, which represents an additional distance term

applicable to congested traffic. In our study, we follow the

authors’ decision regarding this parameter.

The prediction process in the IDM can be divided into

three key stages. Firstly, the leader search phase focuses

on identifying potential leading vehicles ahead of the ego

vehicle. Secondly, the iterative prediction phase employs

the IDM formulation to calculate the desired distance (s∗)

and acceleration (v̇α ) over a defined number of time steps.

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

8



Lastly, in the prediction collection phase, all ego prediction

steps are gathered and transformed into a common relative

coordinate layout, aligning with the output format of the

DL models used in this study.

The IDM relies on a leader vehicle, that is, a road user

positioned in front of it, for its computations. Since the Ar-

goverse dataset does not contain ground-truth information

about leader vehicles, we have to use heuristics to deter-

mine potential candidate vehicles in the scene.

Due to the unstructured format of the data and the IDM’s

structure, an incorrectly chosen leader vehicle would lead

to erroneous predictions for its acceleration output, we

chose a strict heuristic to find leaders, liberally applying

the fallback of picking no leader to not break the under-

lying assumptions of the IDM. Detecting no leader vehicle

will simply result in the vehicle accelerating to approach its

desired speed, which, although it may not lead to accident-

free predictions, is less prone to produce erroneous behav-

iors as tracking an incorrect leader would.

The search function operates on the idea that a line can

serve as an approximated path that the ego vehicle is fol-

lowing, and this line is computed by taking the first and last

measurement points of the ego vehicle p1 and p2 and using

these to solve for a line’s intercept and slope value.

It is then possible to select only the vehicles for which all

measurement points have a distance to the line that is equal

to or less than the specified maximum distance. A missing

leader vehicle is handled by inserting a dummy entry at

an infinite distance. This ensures that in the acceleration

computation, the free-road term dominates appropriately

when no leader can be set.

After the leaders are determined, we iteratively compute

the next position of the ego agent at the given time step. A

central part of this process is the generation of the desired

acceleration, as given by the IDM formula, which is then

translated into new coordinates for the ego vehicle taking

into account the velocity of the agent up to this point, its

direction and the measurement rate of the data.

As the IDM shows inaccurate accelerations in this dis-

crete time-step setting, which can diverge to infinity in

close proximity to another vehicle, it is necessary to clamp

the values accordingly. The defined maximum desired ac-

celeration and deceleration were therefore chosen as intu-

itive limits to ensure that the prediction could be completed

without numerical error.

Due to the fact that the ego agent is effectively moved,

with each prediction step being its latest position, it be-

comes necessary to also model the movement of any de-

tected leaders beyond their already supplied movement his-

tory in order to avoid the scenario where the ego agent en-

croaches on a leader vehicle which is not moving through-

out the prediction horizon. For simplicity’s sake, we use a

simple linear prediction that assumes that the leader vehi-

cle has a constant velocity and direction of travel based on

its supplied movement history.

The predictions are then used to calculate the loss that was

implemented using a Smooth L1 loss [11] function. The

Smooth L1 loss, is a commonly used loss function, partic-

ularly in regression tasks. It is similar to the MSE loss but

was chosen because it transitions to the MAE loss as the er-

ror increases. This characteristic makes it robust to outliers

compared to the traditional MSE loss because it does not

grow quadratically for large errors but instead falls back to

linear growth.

3.2.2 Long Short Term Memory Model
An LSTM network is a popular DL recurrent architecture

for models that are intended to operate on sequential data

points. This makes them a natural fit to be able to en-

code the agents in our traffic scene prediction task. In

order to derive the final predictions, an additional multi-

layer perceptron (MLP) is superimposed on the LSTM en-

codings, which facilitates the transformation of the LSTM

output into the desired format. The LSTM is configured

to take an input of size 4 corresponding to the features

xstart ,ystart ,xend ,yend , which correspond to the 2D starting

and end coordinates for the given timestep and contains

128 features in the hidden state and 3 layers. The MLP

receives the 128 features of the LSTM and reduces the fea-

ture space to the final output size. The predictions are then

evaluated against the ground truth using the Smooth L1 loss

function.

3.2.3 Physics Informed Artificial Neural Network
The PINN is a combination of the two previous networks.

The physics-informed approach integrates the complemen-

tary IDM model by adding the difference between its out-

put and that of the DL model as an additional term to

the overall loss function with which the LSTM model is

trained. In this manner, the output of the IDM acts as a reg-

ularization term for the LSTM model, which should pro-

vide a loss signal that leads the LSTM to emulate the out-

put of the IDM. The PINN loss is formulated as (5) where

losslstm denotes the regular loss calculated for the LSTM

component and losspinn is the loss between the predictions

of the IDM component and the LSTM component which

is then scaled using lossidm, which represents how well the

IDM model performed in the given scenario.

losstotal = losslstm +(1− lossidm)losspinn (5)

Importantly, this loss acts as a soft constraint placing no

hard constraint on the LSTM contained in the PINN model

as a significant reduction in any loss term can potentially

compensate for any stagnation or increase in the loss term

between the IDM’s and LSTM’s predictions.

3.3 Training
Prior to commencing the actual training, a parameter

search was initiated to identify the most suitable set of hy-

perparameters. The search involved conducting 500 tri-

als using the Optuna framework to determine the opti-

mal hyperparameters for the network. The search identi-

fied a learning rate of 7.0616e − 05 and a weight decay

of 6.2742e− 06 as the optimal choice for the LSTM and

PINN model.

Subsequently, with these determined hyperparameters in

place, the networks underwent 25 epochs of training on

the filtered training dataset. Evaluation of the network per-

formance was carried out at the conclusion of each epoch,
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based on the evaluation split.

The IDM being a symbolic model, naturally, was not opti-

mized during training.

4 Results

The training results for the LSTM and PINN model are

depicted in figure 1 and 2. A comparison of all models is

summarized in Table 1.

Figure 1 LSTM training progress indicated by the perfor-

mance on the validation split

Model Value Epoch

IDM-ADE 2.79 6

LSTM-ADE 1.965 9

IDM-FDE 7.817 1

LSTM-FDE 6.335 8

IDM-Miss Rate 0.9297 5

LSTM-Miss Rate 0.6953 9

Table 1 Comparison of the LSTM and IDM training

progress

5 Discussion

5.0.1 LSTM
Table 1 shows that the trained LSTM model achieves the

best performance of all the models examined. Figures 1

and 2 show that the model starts at a comparatively high

value for all metrics which begins to improve until the net-

work experiences a short but notable divergence during

training. This divergence gives way to a significant im-

provement of the loss and metric values, showing that af-

ter this divergence the values quickly converge to the men-

tioned best performance of all three examined models.

Figure 2 PINN training progress indicated by the perfor-

mance on the validation split

Said divergence can be seen occurring around the sixth and

seventh epoch where the loss jumps to 2.5; the loss, how-

ever, drops significantly after this to the 0.05 - 0.04 range

where it largely remains for the rest of the training.

The metrics follow this pattern, starting off with slow con-

vergence, spiking between in the seventh epoch, and then

radically dropping afterward while then continuing a slow

convergence until the end of the training. The result of this

training is an LSTM that appears to quickly find a good fit

for the data presented to it, achieving the best end scores of

all models presented here, as well as good objective scores.

We examined several scenarios individually for all mod-

els. Examining the LSTM’s predictions on specific sce-

narios shows that, unlike the IDM and PINN models, the

LSTM predicts a noticeably longer trajectory, often in line

with the ground truth while also maintaining a smoothed

trajectory. However, some of the reviewed scenes reveal

that unlike what the significantly better metric values pre-

sented in 1 would suggest, the LSTM seems to struggle

with slight turns, similar to IDM and PINN. Although this

would be expected from the IDM, the fact that this effect

appears both for the LSTM and the PINN, visible in figure

3, suggests that the filtering of the dataset was too strong

and may be causing overfitting for the LSTM in either the

standalone version or as a component in the PINN.

5.0.2 PINN
As the figure for the PINN training 2 shows, the train-

ing contains a single notable divergence across all metrics,

similar to that found in the LSTM, indicating that this is a

phenomenon specific to the LSTM component. The spike

here reaches a loss of 3.8, higher than the spike observed

in the standalone LSTM, and then unlike the pure LSTM

model, it reduces down to levels in the neighborhood of
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0.31 that are reached just before the spike. This is in con-

trast to the LSTM which achieves significantly better re-

sults after its loss spike, not returning to the pre-spike lev-

els. The loss then continues with a small but persistent

convergence to the loss value of 0.3034 at the end of train-

ing.

The final performance scores of the model show that it

reaches a middle ground between the standalone LSTM

and IDM implementations, indicating that even with the

filtering of the data set from the previous chapters and the

scaling of the influence of the IDM component by its own

confidence, the LSTM component might be limited by the

addition of the IDM in terms of reaching its full expressive

potential to encode the dynamics seen in the data.

On the positive side, it should be observed that the PINN

network, similarly to the IDM model starts out with lower

ADE, FDE and Miss-Rate scores and maintains this lead

over the pure LSTM network until after the spike. This

would seem to indicate that the IDM model provides ini-

tial stability to the prediction of the LSTM network by

providing a generally reasonable driving behavior but, by

the same token, prohibits it from fully capturing the de-

tails of the driving scenarios the IDM cannot model and

for which its integrated loss will subsequently punish the

LSTM component for attempting to model ground truth

driving that is not captured by the IDM.

Figure 3 PINN network prediction on a driving scenario

with a slight bend

In reviewing the predictions of the PINN, we noticed that

it is able to produce a good prediction that shows little de-

viation from the ground-truth future in scenarios similar to

the LSTM as can be seen in figure 3. However, it can be

seen that while the prediction mirrors the ground truth in

heading and shape, it stops short of the ground truth fu-

ture in terms of longitudinal distance covered, unlike the

LSTM. We noticed that the PINN model generated shorter

distances between the prediction steps the longer the sim-

ulation went, suggesting that the PINN predicts a gradual

deceleration, possibly induced by the IDM component pre-

dicting such breaking to increase the distance to the leader

vehicle.

Similarly to the LSTM model, we observed that the PINN

model exhibits strong problems with modeling hard turns,

some of which still made it into the filtered dataset. This

can be attributed to both the IDM component in the PINN

network, which cannot predict curvatures, and a general

lack of turning scenarios in the filtered dataset, which

likely leaves the LSTM component unable to learn these

more drastic maneuvers and as a result, cannot augment

the IDM model in this scenario.

5.0.3 IDM
The IDM shows a significant performance difference from

the trained LSTM model. This is not at all unexpected,

as the variety of the underlying data is unlikely to be fully

captured by a model that only considers straight driving

and does not receive information about the surroundings

outside of that of a leader vehicle, should it be present.

On this note, it should be mentioned that the rate at which

the IDM identifies leaders for a scenario was measured to

gain insight into how well the current techniques for this

subtask work. Both the filtered evaluation and the training

split were tested, and the IDM identified 2931 leaders in

the 10000 scenarios contained in the training split and 24

leaders in the 100 scenarios in the validation split. This

averages to a detection rate of 26%, which while leaving

significant room for improvement, is a better than expected

rate. However, it is important to note that this number does

not reflect how many scenarios contain an agent that would

be a good candidate for leader detection but was not de-

tected. Instead, the current rate only resembles the distance

to the absolute best-case upper bound, not to the actual up-

per bound of existing leader vehicles captured in the sce-

narios.

As might be predicted, the IDM can predict the path of the

ground-truth-future with good accuracy in scenarios that

feature straight or close to straight driving with little lat-

eral movement. Compared to the PINN network, it stands

out that the IDM prediction does not reach the longitudinal

distance covered by the PINN network, suggesting that the

PINN network also shorter-than-ground-truth prediction is

influenced by the IDM component.

A detail to note also is the small lateral deviations in

the IDM predictions, although not significantly notable

performance-wise, these show that the computation of the

predictions heading reproduces lateral deviations from the

ground truth past of the ego agent, whereas the PINN and

LSTM networks learn to smooth out these trajectories.

It can be safely stated that in the current configuration, the

IDM is totally unable to model turns in the manner im-

plemented, though there are possible remedies that, once

implemented, could enable the model to capture the rather

simple turns we observed appearing even in the filtered

dataset.

As can be seen in the previous sections, there is room for

improving the presented implementation of a PINN net-

work. First and foremost would be the refinement of the

utility functions that the IDM uses to determine headings,
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velocities, and the leader vehicles and their behavior. In

particular, the heading is currently approximated by fitting

a line through the first and last data points of the speci-

fied agent; naturally, this method is vulnerable to outliers

and does not capture even small curvatures due to its linear

character.

A straightforward improvement would be to exchange

these line approximations with curves of a second degree

or higher that are fitted to all agent data points, for example,

in a least-squares process. This would enable the model

to better withstand outliers and capture simple trajectories

with one or two inflection points. This could potentially

improve the predictions by allowing the IDM to continue

curves that are evident from the ground-truth history and

also by enabling the model to identify and acquire leaders

that are preceding it in the path but are too far off the cur-

rent heading to be captured by the current linear algorithm.

In a similar manner, the velocity, which is currently also

approximated by the start and end point, could be refined

by observing the rate of change during the history window

and continuing it appropriately.

These same techniques would be equally applicable to

the approximate forecasting that is currently done for the

leader’s future, although it may be feasible to employ the

DL model to predict the future of the identified leader ve-

hicles in tandem with the ego vehicle, possibly alleviating

the IDM model of continuously approximating the leader

vehicle with, presumably, an ever compounding error.

6 Conclusion

This paper presents an implementation of the intelligent

driving model, which is used to augment an LSTM-based

motion prediction model and stabilize its performance dur-

ing the initial training stages in the combined PINN net-

work. The three different networks are qualitatively com-

pared through metrics during training, as well as through

inspection of selected scenes. The results show that the

combined PINN model achieves a performance middle

ground between the purely data-driven and symbolic mod-

els.

It is also shown that the amount of data filtering that was

carried out under the assumption that it would aid the

IDM and as a result the PINN is likely too restrictive and

prevents the LSTM network from learning crucial turn-

ing movements that the IDM cannot model, preventing the

models from complimenting each other to the expected ex-

tent. With this, the results highlight that knowledge in-

tegration must be carefully considered depending on how

well the physics-informed model is capable of modeling

the data and how much it is weighed as a loss term as a re-

sult, as it will otherwise negatively influence the DL model

directly or through the constrained data.
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Abstract

Learning based methods for localization in robotics and automated vehicles are a topic of ongoing research. While

the methods that are currently in use work with a variety of sensor setups and show remarkable performance in pose

estimation, research into uncertainty estimation of learning based methods is limited. This work presents a flexible

method that allows to take the confidence of the localization method into account during training. Leveraging uncertainty

estimates derived from learned features, we reduce overconfidence of the model and improve pose tracking performance

purely derived from the training data.

1 Introduction

Solving the localization problem for an automated ego ve-

hicle in an unstructured environment poses a set of chal-

lenges to the localization methods that are used. To en-

able flexible pose estimation using exteroceptive sensors,

machine learning based methods have gained popularity

in recent years. These methods typically extract features

from both map and environment that are useful for the

localization task. Afterwards, a registration of these fea-

tures is performed, resulting in a pose estimate that best

matches the current sensor data onto the map. In this con-

figuration, the machine learning model performs the role

of a sensor model in traditional localization methods. One

problem that arises in this configuration is the often in-

sufficiently accurate measurement covariance of the sensor

model. Modern deep neural networks used for classifica-

tion tasks have a tendency to be overconfident in their esti-

mates [1]. These problems appear in learning based meth-

ods used for various automated driving tasks, ranging from

odometry [2] to image classification [1]. Localization, as

one of the fundamental tasks in the AD (Automated Driv-

ing) stack, is no exception in this regard. Models for scan

matching may produce overconfident pose estimates [3],

[4]. Here, a confident but wrong pose estimate can result

in consequences up to crashing [5].

Mitigation methods for this property come from the realm

of classification, where confidence scaling is used to make

the network estimates match a calibrated confidence score.

This method is usually applied after training of the network

has finished and is applied only to the sensor model [2], [3].

One disadvantage of this approach is the inability to cali-

brate sensor model and pose tracking jointly. Correlation

of consecutive measurements and the optimization target of

filter consistency are not explicitly taken into account. For

localization, this can be addressed by integrating the filter

into the training task and minimizing not only the tracking

error but also filter inconsistency. Sensor model, uncer-

tainty estimation and pose filtering can be trained end-to-

end, due to all components being partially differentiable

with respect to their inputs.

1.1 Related Work
Combination of deep learning and traditional tracking

methods have been an area of active research with the on-

set of application of deep learning methods in the realm

of robotics [6]. For mobile robot applications, state es-

timation based on a learned feature extractor and a clas-

sical tracking method has been used extensively in local-

ization using an existing map [7], [8] and Simultaneous-

Localization-and-Mapping (SLAM) [9]. One aspect of

state estimation that is crucial for safety critical applica-

tions like automated vehicles is the notion of consistency.

Consistency, in this context, means an accurate estimate

of the uncertainty of the estimate has to be provided by the

method. This is required to decide on the availability of the

AD system. For the Extended Kalman Filter (EKF), auto-

matic tuning methods exist to ensure accurate estimation

of the filter’s uncertainty [10]. This work introduces the

filter method into the training process to guide the training

signal with respect to the overall goal of an accurate and

consistent tracking result.

2 Method

In this contribution, a method for the explicit inclusion of

measurement and model uncertainty into the training pro-

cess of a machine learning based localization method is

presented. The localization method is set up to run GNSS

(Global Navigation Satellite System) free after coarse ini-

tialization and only relies on a ranging sensor like radar or
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lidar and an IMU (Inertial Measurement Unit). To allow

fusion of pose estimation and odometry, an EKF with a

constant-turn-rate-and-acceleration model (CTRA) is em-

ployed. Sensor model, motion model and filter are all end-

to-end differentiable and are implemented in PyTorch.

The model is unrolled for a number of steps on the train-

ing dataset and the pose estimate x̂ and the estimated co-

variance P̂ are included in the loss function. This strat-

egy enables the model to take previous measurements into

account when estimating the uncertainty. Overconfidence

in areas of high uncertainty can potentially be reduced, as

prior pose estimates and the motion model act as a sepa-

rate source of information. Additionally, the noise parame-

ters of the EKF can be tuned during training by decompos-

ing their covariance matrices via the LDLT decomposition

(square-root-free Cholesky Decomposition). The resulting

matrices can be directly implemented as trainable PyTorch

parameters, as all constraints on the covariance matrices

are implicitly fullfilled by the LDLT composition. To avoid

negative influences of the covariance adaptation on the lo-

calization accuracy, the training process distinguishes be-

tween two paths through the filter: Covariance estimates

only influence the auxilliary confidence loss, while back-

propagation into the maximum likelihood pose estimator

itself is only enabled for the MSE (Mean-Squared-Error)

loss term.

The Mahalanobis distance of the ground truth to the filter

estimate, also called Normalized Estimation Error Squared
(NEES) [10] is used as a proxy for filter confidence. The

average of this measure approaches the number of degrees

of freedom of the system in a consistent KF. The full model

configuration for training is shown in Figure 1.

Radar Input

Pointcloud Map

Softmax

EKF Correction

MSE

NEES

EKF Prediction

CTRA

R̂k p̂k

P̂k|k−1x̂k|k−1

Q

P̂k x̂k

R+

Figure 1 Training configuration of end-to-end learnable

localization method. Dashed lines denote path

of covariance matrices. Strike through denotes

parts of the system where no backpropagation is

taking place.

2.1 Scan Matching Model
The learning-based scan matching model performs a cor-

relation based matching of the features extracted by a set of

two neural networks that process the sensor data and map

respectively. As the architecture is based on [3], direct pro-

cessing of 3D data is possible.

Starting from the networks described in [3], we leave the

PVConv (Point-Voxel-Convolution) architecture [11] for

point cloud processing unchanged. For radar processing, a

Lidar input PVConv ×3 UNet ×3

Figure 2 Structure of the embedding networks

PVConv× 3: Only part of map embedding net-

work. Dashed: only part of sensor embedding

network. UNet× 3 denotes a U-Net [13] struc-

ture with three downsampling blocks and three

upsampling blocks.

y

x

θ

y′

x′

v

Figure 3 Components of the state vector describing the

vehicle state in the world frame. The point on

the vehicle that is tracked by the state vector cor-

responds to the center of the rear axle. x′ and y′

denote the local coordinate system of the vehi-

cle. θ̇ and a are the time derivatives of θ and v,

respectively.

smaller residual formulation is selected to reduce the mem-

ory footprint of the network and simplify the learned prob-

lem [12]. Figure 2 shows an overview of the embedding

network structure.

This allows backpropagation through time for longer se-

quences and larger batch sizes. These are necessary to in-

crease the sample size for the optimization of the NEES

during training.

2.2 Pose Tracking
The pose of the vehicle is tracked by an EKF with the

state vector x̂ =
(
x y v θ θ̇ a

)T
. Figure 3 shows

a visual representation of the components of the state vec-

tor. The acceleration and angular velocity innovations are

taken directly from the IMU of the vehicle in [14]. Veloc-

ity is estimated from the pose update via finite differences.

The velocity (co)variance is provided based on the position

innovation covariance and the covariate factors are set ac-

cordingly. x , y and θ make up the current pose estimate

p̂ and are estimated by the network based on the current

estimate via p̂ = p̂k|k−1 � p̂d. Here, p̂k|k−1 is the current

prediction based on unrolling the previous estimate and p̂d

is the difference predicted by the network. � is the pose

composition operation in 2D coordinates.

2.3 Training
The model is trained on a section of the Boreas dataset

[14]. Hyperparameters are selected based on a Bayes opti-

mization, where learning parameters and model parameters

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

14



Table 1 Training parameters

Parameter Value

Learning Rate 1.2 ·10−4

Weight Decay 1.2 ·10−6

Batch Size 3

Sequence lenght 5

PVConv Voxelization Size 5 ·5
Scan Resolution 0.2 mpx−1

Embedding Resolution 0.2 mpx−1

Number of Rotations 17

like rotation count are jointly optimized. Optimization of

hyperparameters is performed on a subset of training and

validation datasets to accelerate training. Table 1 gives the

results of this optimization. After selection of the best hy-

perparameters on this subset, a new training is performed

from scratch on the full dataset.

2.3.1 Optimizing the Pose Estimate
During training, the localization model is fed consecutive

radar scans and predicts the current pose based on the radar

features and map. At each time step, the mean-squared-

error LMSE(k)=
(
p∗

k − p̂k
)T (p∗

k − p̂k
)

is computed. Adam

[15] with weight decay is used for optimization. The em-

beddings generated by the network are additionally forced

to be rotation equivariant by feeding rotated copies of the

map into the network and minimizing the difference to the

rotated original embedding. Unrolling the CTRA model,

the estimate for the next timestamp is then predicted by the

EKF, before another correction step is performed. Due to

memory limitations, the model can be unrolled for 3 time

steps while maintaining a batch size of 4.

2.3.2 Enforcing Consistency
A separate loss function enforces consistency of the fil-

ter output. For this, the Mahalanobis distance dm =(
p∗

k − p̂k
)T P−1

(
p∗

k − p̂k
)

is used. p∗
k denotes the ground

truth pose derived from the real-time-kinematic GNSS

present in the vehicle [14]. The NEES loss is selected to

be

LNEES =

∣∣∣∣∣∑
K
k=0

(
p∗

k − p̂k
)T P−1

(
p∗

k − p̂k
)

K
−3

∣∣∣∣∣ . (1)

where K is the number of time steps for which the filter is

unrolled during training.

As the correlation output may not directly model the pose

uncertainty, an additional covariance matrix R+ is added

to the estimate from correlation. This covariance matrix

is forced to be positive semi definite by the same mech-

anism that is used for the EKF implementation. The fi-

nal measurement uncertainty R̂ is thereby composed of

R̂ = R̃ + R+, where R̃ denotes the covariance derived

from the correlation result as in [3]. Without this mech-

anism, scenes with high uncertainty in only one dimension

might force the feature extractor networks to diffuse sharp

features in a way that impacts overall localization perfor-
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Figure 4 Training and test data split of the Boreas dataset.

mance. To further decouple consistency and the pose es-

timate itself, the estimate p̂k is detached from the com-

putation graph in the consistency loss to prevent PyTorch

from backpropagating any error signal from the consis-

tency check directly into the pose estimator. This is done to

keep the training algorithm from pushing the estimate fur-

ther from the ground truth to achieve consistency instead

of lowering the covariance estimate of an underconfident

filter.

Both losses are added to the overall loss function L =

∑K
k=0 LMSE(k)+LNEES

3 Evaluation

The method is evaluated on the Boreas dataset [16] using

a cross modality localization approach that matches the

2D radar measurements to a precomputed 3D lidar map.

As the sensor model is based on [3], it can directly pro-

cess unstructured 3D data, allowing the model to select 3D

features in the lidar point cloud that best match radar tar-

gets. This approach avoids manual selection of geometrical

structures that are detectable for both sensors.

From the dataset, a mapping drive is selected, part of which

also serves as the training data. The lidar point clouds from

this drive are accumulated and dynamic points are removed

[17].

Evaluation is performed by tracking the ego vehicle pose

over the previously unseen parts of the map in a previ-

ously unseen drive. Figure 4 shows the applied split of the

dataset. The test set for this evaluation was selected to be

a continuously driven loop to avoid reinitialization during

testing, whereas the training set is necessarily split. This

does not influence the training procedure, as only short

five step sequences are used for training. The of the pose

tracking experiment, overlaid with the translation error, is

shown in Figure 5. Special focus is placed on the evalua-
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Table 2 Results for different calibration methods, BL:

Baseline Loss, CL: Consistency Loss

MAE

Model Transl. [m] Lat. [m] Lon. [m] Hdg. [°]

BL 0.93 0.56 0.61 0.4

CL 0.62 0.4 0.39 0.36

tion of filter consistency.

Figure 5 Results of the pose tracking experiment for the

test set with BL and CL. The figures show the

Bird’s-Eye-View (BEV) of the estimated

trajectory.

3.1 Metric Accuracy
To assess the accuracy of the discussed localization ap-

proach, we perform pose tracking on a previously unseen

part of the dataset. This allows showing generalization ca-

pabilities of both the network and the combination of net-

work and tuned filter parameters to new scenes. Table 2

shows the results of the pose tracking experiment. The

errors shown are mean absolute translation error (MAE

Transl.), mean absolute lateral error (MAE Lat.), mean ab-

solute longitudinal error (MAE Lon.) and mean absolute

heading error (MAE Hdg.).

3.2 Filter Consistency
To provide a good estimate of the accuracy of the local-

ization result, the pose covariance computed by the EKF

can be taken into account. As the model is trained to pro-

vide χ2-consistent covariance estimates, the filter should

automatically come to a calibrated confidence. This can be

shown by evaluation of the NEES on the test set. While the

model trained with CL achieves accurate confidence esti-

mates on the training set, the same cannot be said for the

test set, as shown in Table 3. This indicates problems with

overfitting to the training data that is insufficiently captured

Table 3 NEES Results of the pose tracking experiments

Model Mean NEES

BL 91

CL 67

by the validation set, as no similar effect can be observed

on the validation set. Nevertheless, the model trained with

CL shows greatly decreased NEES.

3.3 Discussion
As shown by the results in the previous sections, the pre-

sented method is capable of improving the pose tracking

performance of a learning based scan matching model.

The model trained with NEES optimization generally pro-

duces lower confidence pose estimates, but achieves better

tracking performance by relying more on inertial odom-

etry. This leads to higher overall tracking accuracy and

lowered NEES on the test set. Nevertheless, generalization

capabilities of the approach leave room for improvement.

Whereas the uncertainty estimation on the training set is

well calibrated, on the test set the model remains overcon-

fident. This can potentially be improved by a more diverse

training set, as the model may overfit to the training data.

Long training times with slow improvement on the valida-

tion set further coroborate a correlation between validation

and training data that may be less pronounced on a more

spatially diverse dataset.

4 Conclusion

In the work at hand, we present an approach to combine

learned feature extraction and matching using a neural net-

work with an established tracking approach from tradi-

tional state estimation. The coupling of neural network and

EKF during training eliminates the need for post-training

filter tuning to achieve consistency. Filter parameters tuned

alongside network parameters are optimized on the training

dataset to achieve consistency. This can be shown by eval-

uation of the NEES measure. The model achieves accu-

rate pose tracking performance using only radar and IMU

measurements. Estimation of the uncertainty of the jointly

trained method, while greatly improved during training, is

still overconfident in the pose estimate on the test set.

4.1 Outlook
The model, while tuned for a generally suitable confidence

measure, does not explicitly consider scene geometry as

well as potential viewpoint differences between map and

sensor data. This cannot be easily addressed by the current

model, as the embedding networks do not model these in-

teractions of map and sensor well, i.e. the map encoder is

unaware of the current sensor view and the sensor encoder

cannot consider unseen similar geometries. These issues

could, however be addressed by adding a global context to

the feature maps through mechanisms like attention. One

major open question of the presented approach is the gener-
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alization capability on a more diverse dataset that contains

rural data. Due to the lower feature density of open, rural

spaces, confidence estimates of the proposed method may

vary drastically. This will be addressed in future work.
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Abstract

Many approaches plan an automated vehicle’s future motion by solving an optimal control problem (OCP). This work

discusses the criteria for the OCP design in automated highway driving. The criteria are applied to extend an existing

spline-based motion planning algorithm with an additional target manifold and cost features. The resulting planning algo-

rithm is applied to a merge-in maneuver, where the impact of cost weights on the driven trajectory and OCP complexity

is evaluated. It is observed that the positive effects of additional features on the closed-loop trajectory are limited by

the trajectory parameterization. However, it provides a regularization if the trajectory consists of multiple polynomial

segments.

1 Introduction

The control architecture of an automated vehicle is hi-

erarchical [1]. In the architecture, the motion planner

usually receives high-level commands from the behavior

layer. The motion planner aims to find a dynamically fea-

sible and collision-free trajectory when executing the high-

level command while considering the passengers’ comfort

needs. Formulating an optimal control problem (OCP) al-

lows considering the mentioned demands. Several motion

planning approaches apply the OCP of the form in equa-

tions (1) and (2), which can be found, e.g., in [2]. In gen-

eral, the state x : R �→ R
m and input trajectory u : R �→ R

n

on the time horizon T ∈ R are subject to optimization.

V (x0) = min
x,u,T

F
(
x(T )

)
+
∫ T

0
l
(
x(τ) ,u(τ)

)
dτ (1)

such that: x(T ) ∈ F , x(0) = x0,

x ∈ Xf, u ∈ Uf, ẋ = f(x,u) .
(2)

The cost consists of the running cost l : Rm ×R
n �→ R and

the final cost F :Rm �→R. Also, a vehicle model ẋ= f(x,u)
and the initial vehicle state x0 ∈ R

m must be considered.

The state and input trajectories are constrained to the feasi-

ble state space Xf ∈R
m and input space Uf ∈R

n consider-

ing, among other things, the model’s input limitations, free

space, and traffic rules. Finally, the state trajectory must

end in the terminal set F ⊂ Xf. A transcription from an

infinite- to a finite-dimensional OCP is required to solve it

numerically. Therefore, one can choose from three meth-

ods: the Direct Method, the Indirect Method, and Dynamic

Programming.

Several criteria need to be considered when developing a

motion planning algorithm.

1. Automated driving objectives: the motion planning al-

gorithm must be designed to consider possibly contradict-

ing objectives of different priorities. The objectives include

the desire to move towards a destination quickly, a comfort-

able ride experience for vehicle occupants, and compliance

with traffic laws.

2. System stability: the planning algorithm must stabi-

lize the automated vehicle near the target manifold. De-

sign criteria can be found in the optimal control literature

[2]. In essence, a sufficiently accurate vehicle and envi-

ronment model is required, while the cost must resemble a

Lyapunov function for the controlled system.

3. Computational complexity: real-time constraints must

be considered to achieve an applicable planning algorithm.

At the same time, a sufficient solution quality must be

achieved.

This paper provides an overview of the criteria for design-

ing an OCP for an automated driving motion planning al-

gorithm. The criteria are applied to extend the OCP of the

previous work [3]. Firstly, an additional terminal set is in-

troduced to implement vehicle-following maneuvers. Sec-

ondly, the cost function is extended to consider the squared

acceleration to improve the perceived comfort. The eval-

uation demonstrates how the cost adaption influences the

driven trajectory and the limitations under the used trajec-

tory parameterization.

The section 2 provides an overview of motion planning for

automated driving, particularly the application of polyno-

mial splines. Section 3 introduces the used environment

and vehicle model. The cost functional and terminal man-

ifold design are discussed in section 4, followed by a de-

scription of the trajectory parameterization in 5. The re-

sulting motion planner is evaluated in 6. Finally, section 7

provides a summary and an outlook.
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2 Related Work

The OCP is transcribed into a finite-dimensional optimiza-

tion problem using the Direct Method. A nonlinear pro-

gram (NLP) is used frequently since it can consider com-

plex models of the vehicle and environment. [4] formu-

late a NLP for motion planning in urban environments us-

ing polygons to represent obstacles. However, solving the

problem can be computationally expensive, depending on

the problem’s dimensionality and the initial guess. Addi-

tionally, the approximation of vehicle dynamics introduces

many degrees of freedom.

The differential flatness property of the kinematic vehicle

model is used to reduce the OCP’s number of variables. A

polynomial trajectory parameterization yields the exact so-

lution to the differential equation while being optimal in a

squared-jerk manner [5]. Therefore, the number of opti-

mization variables can be reduced while the solution qual-

ity remains sufficient, especially in highway scenarios.

However, a single polynomial can be too restrictive in sit-

uations close to the kinematic limits, narrow environments,

or complex maneuvers. Multiple polynomials can be at-

tached to increase the degrees of freedom, resulting in a

polynomial spline function. Splines are used in [6], where

an unconstrained NLP is solved to find trajectories in high-

way scenarios.

In many motion planning algorithms, the feasibility of the

trajectory is only ensured at finitely many time steps. Thus,

a constraint violation between the time steps cannot be ex-

cluded. The problem can be approached by leveraging the

basis form of polynomial splines [7]. The coefficients of

the basis form bound the spline function from below and

above. Therefore, the feasibility of constraints formulated

based on such coefficients is guaranteed on the whole plan-

ning horizon.

Basis-splines (B-splines) are applied by [8] to control non-

linear systems with guaranteed constraint satisfaction. Fur-

thermore, an approach is proposed to compute the sum

and product of splines, allowing the exact consideration

of polynomial systems. [9] apply the ideas to plan scaled

minimum time trajectories for holonomic mobile robots in

dynamic environments.

Inspired by [9], the prior work [3] proposes a shrink-

ing horizon approach into a selected terminal manifold

for highway environments. A nonlinear optimization al-

gorithm searches for optimal coefficients and breakpoints

(BPs) for a spline trajectory in the Frenét frame.

3 Environment and Vehicle Model

The following summarizes the constraints representing the

feasible sets Xf and Uf together with the vehicle model.

A more detailed explanation regarding the constraints’

derivation and implementation is provided in [3].

A linear vehicle model is assumed with the state space

xi =
[

R pi Rvi Rai
]

: R �→R
3. The index i ∈ {x,y} deter-

mines the direction of motion. The ego vehicle trajectory

is described in the Frenét coordinate system, relative to the

target lane center, which is indicated with the prescript R�.

R pi denotes the position, Rvi the velocity, and Rai the ac-

celeration in the i-direction. Limitations on the vehicle’s

acceleration ensure the dynamic feasibility of the trajec-

tory. Therefore, the acceleration in the ego vehicle’s nor-

mal coordinates, indicated with N�, is approximated with

Nax ≈ Rax and Nay ≈ Ray−κR Rv2
x , using the path curvature

κR : R �→R. The acceleration in the x-direction is bounded

to −ax ≤ Rax ≤ ax with the limit ax ∈ R
+. The bound in

y-direction is simplified to −ay+ κ̂v2
x ≤ Ray ≤ ay− κ̂v2

x and

considers the maximum road curvature κ̂ ∈ R
+, the maxi-

mum velocity vx ∈ R
+, and the acceleration limit ay ∈ R

+.

The predicted occupancies of other vehicles are considered

to plan a collision-free trajectory. Axis-aligned ellipses are

used to approximate the vehicles’ rectangular shapes con-

servatively. It is assumed that for each o = 1,2, . . . ,Nov

other vehicle with Nov ∈R
+ a predicted position o

R pi : R �→
R is available. Considering the ellipse diameters of the

ego vehicle Δi ∈ R
+ and the obstacle vehicles oΔi the con-

straints

(R px − o
R px)

2

(Δx +
oΔx)

2
+

(R py − o
R py)

2(
Δy +

oΔy
)2

≥ 1

4
(3)

ensure that vehicle shapes do not overlap. A limitation of

the absolute relative heading angle to ψ = 10deg in the

equations (4) and (5) ensures the validity of the ego vehi-

cle’s ellipse with the maximum lateral position p̂y ∈ R
+.

0 ≤ Rvx (1− κ̂ p̂y) tanψ −Rvy (4)

0 ≤ Rvx (1− κ̂ p̂y) tanψ +Rvy (5)

An upper bound on the velocity Rvx ≤ vx prevents the ve-

hicle from exceeding the speed limit. Additional bounds

plb −Δy/2 ≥ R py and prb +Δy/2 ≤ R py on the lateral posi-

tion prevent the vehicle from crossing the solid lane bound-

aries. The variables plb ∈ R and prb ∈ R denote the lateral

position of the left and right solid lane boundaries relative

to the target lane center.

4 Cost Functional and Terminal Set

Next, the cost functional and the terminal sets are derived

and assessed based on the three criteria mentioned in sec-

tion 1. [10] provide an overview of automated driving ob-

jectives and corresponding cost features, which are used

in the following. Firstly, the motion planner shall reach a

target provided by the behavior layer. The target should

be reached as quickly as possible to maximize the overall

progress towards the navigation goal. In structured envi-

ronments, the targets in the longitudinal direction are usu-

ally a velocity or based on a lead vehicle trajectory. Fur-

thermore, a reference path in the form of a lane center is

provided as the target in the lateral direction. The cost mea-

sure progress by distance from the target, like in [4], or by

the time into the target, as in [5].

Secondly, the automated vehicle must adhere to traffic

rules on public roads, like [11]. This paper focuses on the

rules that can be considered by the motion planner and that

apply to highway-like environments. Such rules include

tracking the rightmost lane, if possible, and overtaking on
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the left side. A minimum time headway of 2 s must be en-

sured toward the leading vehicle in the longitudinal direc-

tion. Also, the vehicle shall not exceed the given velocity

limit.

Finally, the passengers desire a comfortable driving experi-

ence. The literature has neither a unique definition of driv-

ing comfort nor a unique measure for the perceived driv-

ing comfort [12]. However, [13] describe effects that in-

fluence driving comfort and can be considered by a motion

planning algorithm. An important factor is the force acting

on the vehicle passengers due to steering and acceleration.

The effect of forces is usually measured by acceleration and

jerk, which should reach low values [12]. The experience

of motion sickness is mainly the result of low-frequency ac-

celerations, which may be addressed by a sufficiently con-

tinuous trajectory with low jerk [13]. Also, the automated

vehicle should convey the feeling of safe operation to the

passengers. Apparent safety can be achieved with, e.g., a

safe distance to other vehicles and avoiding overshooting

during a lane change [13]. Finally, the requirement for nat-

ural paths demands trajectories similar to human drivers.

A method to approach this task is inverse reinforcement

learning. Therein, the cost elements are weighted based on

human driver trajectories [10].

4.1 Terminal Set
The terminal set must be chosen to ensure the convergence

of the vehicle into a chosen target. Therefore, it must be

reachable within the planning horizon of T = 10s.

The center of the target lane is chosen as the terminal set

in the lateral direction

Fy = {xy ∈ R
3|R py ∈ Py,lc ∧Rvy = 0∧Ray = 0}, (6)

where Py,lc includes the y-positions of the lane centers.

The behavioral layer is assumed to provide the target lane,

considering the traffic rules regarding left-side overtaking

and right-side driving. The terminal set strictly forces

the vehicle to follow the lane center. Highways are con-

structed with continuity up to curvature in congruence with

the maximum allowed velocity to ensure safe driving [14].

Thus, forces are assumed to be acceptable to the passenger.

The maximum allowed velocity is chosen as the target in

the longitudinal direction. Driving with maximum velocity

minimizes the time along a route while it leads to zero ac-

celeration in the x-direction. Also, the longitudinal target

is considered the terminal set

Fx,v = {xx ∈ R
3|Rvx = vx ∧Rax = 0}. (7)

However, the speed limit might not be reachable in the

presence of other vehicles.

The required minimum time headway of tlv = 2s is con-

sidered by offsetting the predicted lead vehicle position to
o
R px,lv = o

R px − tlv o
Rvx, with the predicted velocity o

Rvx, re-

sulting in the terminal set

Fx,lv =
{[ o

R px,lv
o
Rvx,lv

o
Rax,lv

]}
. (8)

o
Rvx,lv and o

Rax,lv denote the offset position’s first and

second-order time derivative. Though other drivers and au-

tomated vehicles might have similar objectives, staying be-

hind the lead vehicle can be uncomfortable. The behavioral

layer is assumed to choose a better target in such cases.

Representing the terminal set via the target manifold sim-

plifies the choice of the cost functional [2]. Also, planning

into the target manifold leads to low-cost trajectories in

closed-loop control. However, one might require a longer

planning horizon and more degrees of freedom in the re-

sulting optimization problem compared to a less strict ter-

minal set.

4.2 Cost Functional
The cost functional consists of the running and the final

cost. Since the trajectory is planned into the target man-

ifold, the final cost is F := 0. The running cost must be

positive definite and zero in the target manifold to ensure

asymptotic stability [2]. The minimum number of trajec-

tory features shall be included to achieve a low computa-

tional complexity while accounting for the automated driv-

ing objectives. Linear quadratic minimum-time problems,

applied frequently in the automated driving context, ac-

count for the progress and comfort objectives. Moreover,

they can yield an analytic solution [15].

In line with the design of the terminal set, time into the tar-

get manifold is selected as a progress metric. Traffic rules

are already considered via the constraints and the terminal

set selection. Thus, no features related to traffic rules are

included in the cost. Commonly, acting forces are consid-

ered by minimizing acceleration and jerk-dependent cost

features. Many applications choose the time integral over

squared jerk and acceleration, complying with the positive

definiteness requirement [10]. According to [16], the jerk

also plays a prominent role in the causes of motion sick-

ness. The distance to other vehicles is already considered

in the terminal set, while the constraints prevent collisions

with conservatively approximated vehicle shapes. Thus, no

additional features related to perceived safety are included

in the cost in favor of the computational complexity. The

weights among the cost features must be appropriately cho-

sen to achieve results similar to human-driven trajectories.

The choice of weights is scenario-dependent [10] and does

not deny asymptotic stability, except setting all to zero.

However, the choice affects the problem complexity and

solution quality, which is discussed in section 6.

As a result of the made considerations, the cost functional

includes a weighted sum of time, the squared jerk, and the

squared acceleration:

J := ∑
i∈{x,y}

∫ Ti

0
wTi +wai Ra2

i (τ)+w ji R j2
i (τ)dτ. (9)

Ti ∈ R
+ denotes the time where the state xi (Ti) ∈ Fi

reaches the target manifold with Fx ∈ {Fx,v,Fx,lv}.

5 Trajectory Parameterization

After formulating the OCP, it must be transcribed into a

finite-dimensional optimization problem. The choice of

transcription method significantly influences solution qual-
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Figure 1 Scene including the ego vehicle (green) and two

other vehicles (orange). The orange dots mark alternate

start positions used in the runtime evaluation.

ity and problem complexity. As in [3], Direct and Indi-

rect Methods are combined. Firstly, the Indirect Method

is applied to the OCP, while neglecting the inequality con-

straints. If wai = 0, quintic polynomials are the optimal

function class [5]. Next, considering the inequality con-

straints, the Direct Method is used. Connecting multiple

polynomials results in a spline function, which improves

the solution quality for wai > 0 and in active inequality con-

straint cases. The IPOPT nonlinear optimization algorithm

[17] chooses the spline parameters and BPs optimally.

The trajectory feasibility must be ensured along the whole

trajectory with finitely many constraints. One possibility is

the trajectory parameterization with splines in basis form.

The basis form of a polynomial spline s : R �→R is defined

by its B-splines bμ,ρ,k : R �→ [0,1] and coefficients cμ ∈ R

with μ = 0,1, . . . ,Nb −1 and Nb ∈ N
+ [7]:

s =
Nb−1

∑
μ

cμ bμ,ρ,k (10)

The B-spline of order ρ ∈ N
+ is defined recursively

on the knots k =
[
u0 u0 . . . u1 u1 . . . uNu−1

]ᵀ
.

The knots consist of repeated BPs uξ ∈ R with ξ =
0,1, . . . ,Nu −1 and Nu ∈N

+. The spline functions are con-

tained within their coefficients min{cμ} ≤ s ≤ max{cμ}.

Thus, it is sufficient to check the coefficients of the con-

strained spline function for feasibility to ensure the trajec-

tory feasibility. However, the approach can reduce the solu-

tion space, leading to suboptimal results in active constraint

cases.

6 Evaluation

The following evaluation demonstrates the asymptotic con-

vergence of the proposed motion planner. In addition, the

influence of the cost weights on the planned and driven

trajectory is analyzed. Therefore, a merge-in scenario is

simulated. On the right lane, two vehicles drive with the

constant deceleration of −0.5m/s2, both starting at the ve-

locity 60km/h. The ego vehicle starts with 65km/h and

desires following the front vehicle 2 on the right lane at a

constant time-gab of 2s. Figure 1 shows the scene at the

initial time step.

The behavior of the other vehicles is known precisely, so

no uncertainty is induced due to prediction errors. Also, an

Table 1 Performance of the closed-loop trajectories, eval-

uated as the sum of distinct cost features. The improvement

over the features from W j is shown in percent.

weights

∫
Ra2

x +
∫

Ra2
y

∫
R j2

x +
∫

R j2
y Tx +Ty

m2/s3 % m2/s5 % s %

W j 5.36 0 1.51 0 17 0

W ja 5.11 5 2.03 −34 16.8 1

Wa 5.15 4 4.51 −199 16.7 2

exact realization of the planned motion is assumed. How-

ever, a limited localization accuracy along the lane center

induces inconsistencies.

A set of cost weights is described by the tripple W� =
(wT ,wa,w j), with � ∈ { j,a, ja}. The weights in each

direction i ∈ {x,y} are chosen the same, i.e., wTi = wT ,

wai = wa and w ji = w j. The first set W j = (0.2,0.0,0.8)
weights time and jerk, the second set Wa = (0.2,0.8,0.0)
time and acceleration. In the third set, jerk and accelera-

tion weights are non-zero W ja = (0.2,0.4,0.4). Initially,

the trajectory in the x-direction contains one interior BP,

while in the y-direction, no interior BP is used, indicated

by the tuple U1 = (1,0).
The ego vehicle state converges toward the target manifold

for all weight sets. Each weight set results in a different

trajectory in Figure 2. The trajectory of the set W j shows

a continuous acceleration, except in the vicinity of the tar-

get manifold. In close vicinity to the target, the planning

algorithm returns a trajectory that follows the target mani-

fold to prevent high accelerations and jerks due to a noisy

state transformation. In contrast, the Wa trajectory results

in higher jerk values. A discontinuity is observable in be-

tween 6s and 7s. Most of the time, absolute acceleration

and jerk are lower than W j. Though close to the target

manifold, the values grow larger. The trajectory resulting

from W ja can be described as a combination of the former

two trajectories, sharing properties of the former two.

The Table 1 reports unweighted cost features resulting

from the closed-loop trajectories. An increase in the ac-

celeration weight leads to an improvement in the combined

acceleration features and convergence times. However, the

combined jerk features are increased by up to a factor of 2

in the case of Wa. Acceleration and time improve only in

a one-digit percentage range due to the suboptimal param-

eterization.

The solution quality is improved by introducing one ad-

ditional BP in each direction, denoted by the tuple U2 =
(2,1). The higher the acceleration weights, the higher the

cost reduction. Since one polynomial is already jerk opti-

mal, the results from a weight set W j do not benefit from

additional BPs in this scenario.

Another effect of the suboptimal parameterization is the

inconsistency between planned trajectories. Over consecu-

tive time steps, the trajectories differ from each other. The

effect results from the optimization algorithm finding a so-

lution that is at least as good as the previous one. The dif-

ference increases as the acceleration weights increase. The

effect is observable in Figure 3, showing the maximum po-
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Figure 2 Closed-loop acceleration and jerk trajectories resulting from different cost weights.

Table 2 Cost values of the closed-loop trajectories for two

sets of BPs. The improvement over U1 is shown in percent.

BPs

W j W ja Wa

cost % cost % cost %

U1 4.605 0 6.829 0 7.461 0

U2 4.605 0 6.783 0.67 7.278 2.45

sition difference between two trajectories over consecutive

time steps. At the beginning of the maneuver, the position

inconsistency is maximum for Wa and W ja. The results

from W j stay lower, while the location uncertainty influ-

ences the x-position.

The choice of the cost function influences the computa-

tional complexity of the optimization problem. The ex-

periment is repeated with the other vehicles placed at five

locations along their lane, as indicated in Figure 1. The

jerk and acceleration cost features add new optimization

variables and constraints to the problem. Table 3 pro-

vides the maximum problem dimensionality for the differ-

ent weights. In addition, statistics of the time until IPOPT

converges are provided (Ubuntu 22.04, AMD Ryzen 5

3600 CPU at 3.6GHz, 16 GB RAM). The dimensionality

decreases during the convergence to the target. The solu-

tion from the previous time step is used to initialize the

optimization algorithm. The lowest overall time metrics

are observable for the weights Wa with the lowest problem

dimensionality. The set W j results in higher time metrics.

The inconsistency between planned trajectories is minimal,

but the problem dimensionality increased. In addition, situ-

ations occur without a unique solution, slowing the conver-

gence in several time steps. The reason is the redundancy

Table 3 Dimensionality of the optimization problem pro-

vided by the number of optimization variables and con-

straints for different weights. In addition, mean, standard

deviation, and maximum computation time are reported.

weights vars. constr.

time (ms)

mean std. max.

W j 332 321 12.74 23.68 236

W ja 364 353 17.59 81.35 1577

Wa 324 313 9.26 9.73 164

of BPs in inactive inequality constraint cases. Finally, the

set W ja results in the highest problem dimensionality and

time metrics. The increased problem complexity causes a

significant increase in iterations in some scenarios. In one

situation, IPOPT fails to converge, though being able to re-

turn a feasible solution

To conclude, adding the squared acceleration to the cost

might not affect the behavior of the motion planner in the

desired manner, as the number of BPs is small. In addition,

it increases the problem’s complexity due to an increased

dimensionality. Thus, omitting the acceleration feature in

low BP configurations might not limit the capabilities of the

planning algorithm significantly. However, in the presence

of multiple interior BPs, a regularization should be applied

to minimum jerk cost, improving the convergence of the

optimization algorithm.

7 Summary and Outlook

This contribution proposes criteria for designing an OCP in

application to a planning algorithm for automated highway
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Figure 3 Inconsistency between planned trajectories of

consecutive time steps measured by the maximum position

difference.

driving. Based on these criteria, an extension to an existing

motion planning problem is proposed. The resulting plan-

ning algorithm is applied to a merge-in maneuver, where

the effect of different cost weights and BPs on the solution

quality and computational complexity is evaluated.

In future work, the experiments should be extended to ad-

ditional scenarios to assess better the effect of cost fea-

tures on the solution quality. Furthermore, a regularization

should be added to the minimum-jerk cost so a unique so-

lution exists in the presence of multiple interior BPs.
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On the Design of Interaction-Aware SCMPC for
Highway Merging Scenarios

Robin Kensbock1,2, Georg Schildbach1

Abstract—This paper addresses interaction-aware decision making and motion planning for highway merging situations using Scenario-
based Model Predictive Control (SCMPC). Given tactical decision options for the autonomous vehicle (AV), a traffic prediction algorithm
intends to identify the most likely evolutions from the current traffic scene, which are then evaluated by an ensemble of SCMPCs to
determine the most efficient decision regarding velocity tracking cost and safety margin satisfaction. This way, we aim to leverage
interaction-aware predictions to gain insights about possible target vehicle reactions to the decisions of the AV with the incentive to
solve merging situations more efficiently and enhance safety by considering target vehicle intentions. We demonstrate the approach
in comparison to a non-interaction-aware baseline method in a multi-vehicle simulation study.

Keywords—interaction-aware autonomous driving, highway merging, motion planning, model predictive control

I. INTRODUCTION

AUTONOMOUS driving demands the fulfillment of vari-

ous algorithmic requirements for decision making and

motion planning, including ensuring that the path is dy-

namically feasible and avoiding obstacles. However, navi-

gating dynamic environments with multiple human actors

also necessitates some understanding of traffic participants’

interactions. Otherwise, misunderstandings may occur that can

potentially lead to safety threats [1] or inefficient behavior of

the autonomous vehicle, such as freezing [2]. According to

[3], interaction in traffic situations occurs if spatio-temporal

conflicts emerge among agents. One traffic situation that

naturally meets this definition is highway on-ramp merging.

A decreasing number of available lanes induces a demand for

a change to the remaining lanes. On the other hand, vehicles

have an incentive to maintain their velocity. This provokes

a conflict between traffic participants, where drivers have to

anticipate the intentions and cooperativeness of surrounding

vehicles in order to efficiently negotiate their maneuvers.

Human decisions, however, are hard to predict as they are

to follow one of multiple likely driving modes, i.e., high-

level maneuvers, within one traffic scene, referred to as multi-

modality.

Scenario-based Model Predictive Control (SCMPC) [4], a

variant of Model Predictive Control (MPC), can be a possible

solution to capture this behavior. Under consideration of mul-

tiple predictions of the current situation within the constraints,

SCMPC approximates the uncertainty while optimizing inputs

and trajectory, ensuring feasibility for all scenarios. This

makes SCMPC able to account for the multi-modality of

surrounding human drivers, making it well suited for safety-

critical applications. Scenarios can be generated separately

using arbitrary prediction approaches.

In this work, we further advance our architecture for

interaction-aware decision making and motion planning based

on SCMPC [5]. The approach incorporates a model-based

1Institute for Electrical Engineering in Medicine of the University of
Luebeck, Germany, ({r.kensbock, georg.schildbach}@uni-luebeck.de)

2Founded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 460891204

interaction-aware traffic prediction method by Bahram et al.

[6] to predict the behavior of surrounding vehicles. The core

concept assumes that drivers are more likely to perform

maneuvers that minimize the risk of the traffic scene, which

is approximated by the time-to-collision between vehicles.

By applying the prediction approach, we are able to iden-

tify and assess potential traffic scenarios conditioned on the

tactical decision options (TDOs) of the autonomous vehicle.

Formulating the associated most likely predicted scenarios

within the constraints of the SCMPC, the architecture aims

to make informed decisions on lane change maneuvers and

acceleration, identifying the optimal TDO in terms of a given

cost function. We illustrate the functionality of our approach

in comparison to a non-interaction-aware baseline planner in

two case studies.

A. Related Work

Although the field of interaction-aware autonomous driving

is still in a nascent stage, MPC has already been applied in this

context for highway merging. Game-theoretical [22]–[27] and

learning-based [11], [12] approaches try to take the influence

of the autonomous vehicle (AV) into account. In [30], [31],

the authors combine MPC with Reinforcement Learning for

on-ramp merging. In [28], [29], a differential game is solved

in order to negotiate a merging maneuver. However, those

approaches do not capture multi-modality.

Variants of MPC that can be able to account for this uncer-

tainty, like Stochastic MPC [7]–[11], Scenario-based MPC [5],

[13]–[18], as well as Branch MPC [19]–[21] have also been

studied for interaction-aware autonomous driving. However,

only a fraction covers highway merging situations, or just

estimates and reacts to the intentions of surrounding vehicles

in the planning process but does not consider the impact of

the EVs decisions. Generally, existing papers rarely consider

more than one surrounding target vehicle (TV) for highway

merging situations, limiting awareness of the overall scene or

do at least not account for multi-modality simultaneously.
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B. Contribution

In this paper, we extend our prior work in [5] to be

capable of handling highway merging situations. To this end,

(i) the approach is augmented to capture the road geometry
of a highway on-ramp merging environment with two parallel

lanes. Further, the predictions are not limited to lateral ma-

neuvers anymore but also (ii) consider discrete decisions on
acceleration and braking, enabling interaction-aware motion

predictions in the longitudinal direction. In order to demon-

strate its effectiveness, (iii) we compare the interaction-aware

motion planner with a non-interaction-aware baseline planner
in a simulation study. In contrast to existing papers, the

approach considers multiple surrounding target vehicles and

aims to account for multi-modality at the same time.

II. BACKGROUND

A. Terminology

In this paper, we stick to the terminology used in our prior

work [5]. The index t ∈ {0, . . . , T} refers to the time steps

over the TP horizon T with time interval Δt. All considered

vehicles are denoted by i, including the AV (i = 0) and i ∈
{1, . . . , I − 1} with I referring to the number of vehicles.

Definition 1 (Maneuver): We assume a fixed number of
potential maneuvers for the AV and TVs. Generally, a ma-
neuver can be described as a pair consisting of a longi-
tudinal and lateral action. Each lateral maneuver m

(i)
t,lat of

vehicle i represents the decision to drive in the center on
one of two target lanes considered from the set ∈ {0, 1}.
A longitudinal maneuver m

(i)
t,lon ∈ {−a, 0, a} corresponds to

maintaining a constant amount a of acceleration/deceleration
or keeping the velocity unchanged. Both longitudinal and
lateral maneuvers can be combined into an overall maneuver
m

(i)
t := {m(i)

t,lon,m
(i)
t,lat}.

Definition 2 (Maneuver Sequence): A maneuver sequence
π
(i)
t for a vehicle i is defined as a tuple of t consecutive

maneuvers {m(i)
1 , . . . ,m

(i)
t }.

Definition 3 (Scene): The set s0 := {x(0),x(1), . . . ,x(I−1)}
composed by the current state of the AV x(0) and the current
states of all TVs x(i), i ∈ {1, . . . , I − 1}, is called a scene
where x(i) := [p

(i)
t,lon, v

(i)
t,lon, p

(i)
t,lat, v

(i)
t,lat] ∈ R

4 with position p
and velocity v in longitudinal and lateral direction.

Definition 4 (Scenario): Initialized by a scene s0, a scenario
st is denoted as st := {π(0)

t , π
(1)
t , . . . , π

(I−1)
t } with an

arbitrary maneuver sequence π
(i)
t for each vehicle with St

referring to the number of scenarios at time step t.

Definition 5 (Tactical Decision Option): A series of maneu-
vers from time step 1 to T selected as a possible candidate
for the decision making module, is considered as a tactical
decision option (TDO), denoted as τn, with n ranging from 1
to N , where N represents the total number of options.

Definition 6 (Target Vehicle Scenario): Given a probability
score for a scenario P [st], s̄τn,κ ∈ {sT |π(0)

T ∈ {τ1, · · · , τN}}
is called a target vehicle scenario, where κ ∈ {1, . . . ,K}

Traffic

Prediction
...

τ1: SCMPC

τN SCMPC

SUMO

τ∗n = argminτn Jτn

s0

s̄τn,κ Jτn

u∗
0,τ∗

n

Fig. 1. Overview of the architecture for scenario-based interaction-aware
decision making and planning [5] using the Simulation of Urban MObility
(SUMO). For details see Section IV.

are the indices of the K most likely considered target vehicle
scenarios.

B. Concept
In order to make informed decisions on the most favorable

tactical decision option, the algorithm is divided into two main

steps (Figure 1): traffic prediction (Section III) as well as

scenario-based decision making and motion planning (Section

IV). The traffic prediction, based on an approach by Bahram

et al. [6] aims to identify the K most likely target vehicle

scenarios for each considered tactical decision option of the

autonomous vehicle by assigning a probability score. Given

a reference velocity, each tactical decision option is then

evaluated by the Scenario-based MPC while considering the

desired front and rear safety margins for the associated K
target vehicle prediction. In contrast to prior work in [5], we

omit the interaction-unaware probability score in the traffic

prediction and focus purely on time-to-collision and extend

the approach to consider longitudinal maneuver options as

well. Further, target vehicles can be considered non- or partial-
interaction-aware by allowing only lane and velocity keeping

or just longitudinal maneuvers, respectively. To decrease the

number of considered scenarios, we do not permit certain

maneuver sequences based on two criteria: (i) lane changes

as well as (ii) changes in the direction of the longitudinal

maneuver may only be made once over the horizon.

III. TRAFFIC PREDICTION

The purpose of the traffic prediction is to calculate a proba-

bility score for each considered scenario. Here, the probability

score is estimated by the risk of collision, as commonly done

in the automotive context via an approximation using time-to-
collision (TTC) [32]

t
(i,i+1)
TTC =

|Δp
(i,i+1)
lon |

max(Δv
(i,i+1)
lon , 0)

. (1)

TTC is defined by the time it takes for a vehicle to closes the

gap Δplon to the leading vehicle in the same lane, assuming

a constant relative velocity Δvlon. TTC can then be mapped

to a pairwise risk using tuning parameters g1 and g2

R(i,i+1) =
1

2
− 1

π
arctan(g1 (t

(i,i+1)
TTC − g2)) ∈ (0, 1), (2)

for the two considered vehicles. If there is the need to consider

more than two vehicles in a scene, a comprehensive risk

R(st|st−1) =
1

I

I∑
i

R(i,i+1), (3)
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can be calculated. The procedure is used in this work, for the

predicted states of all vehicles given all possible scenarios as

combinations of feasible maneuver sequences by mapping the

computed risk to a probability score

P̃ [st|st−1] = 1−R(st|st−1), (4)

and normalized by the sum of all scenario probability scores

P [st|st−1] =
P̃ [st|st−1]∑

st∈St P̃ [st|st−1]
. (5)

With P [s0] = 1, the probability score for a possible scenario

at time step T is the calculated as

P [sT ] =
T∏

t=1

P [st|st−1] . (6)

Further details can be found in [5].

IV. SCENARIO-BASED MOTION PLANNING

In order to find the optimal trajectory x∗
t , SCMPC solves

the finite horizon optimal control problem (FHOCP)

min
u

Jt(xt, ut) (7a)

s. t. xt+1 = f(xt,ut), (7b)

x0 = x(0), (7c)

xt ∈ Z front
t,τn , ∀t ∈ {1, . . . , T}, (7d)

xt ∈ Zrear
t,τn , ∀t ∈ {1, . . . , T}, (7e)

xt ∈ Xt, ∀t ∈ {1, . . . , T}, (7f)

ut ∈ U , ∀t ∈ {1, . . . , T}, (7g)

for the optimal inputs u∗
t over the horizon T , minimizing

cost Jt(xt, ut) in (7a), considering system dynamics f(xt, ut)
in (7b), starting at the initial/estimated state x(0) with dis-

cretization time Δt. The constraint sets on input and states

indicated by U and Xt are enforced in (7f)-(7g). In distinction

to classical MPC, the SCMPC solution has to be feasible for

all considered scenarios, i.e., for the set of most likely TV

scenarios of each TDO τn of the AV, enforced by the sets

Z front
t,τn , Zrear

t,τn in (7d), (7e).

For each τn, the longitudinal position is constrained, such

that a safe margin dfront has to be kept from the predicted

position p
(i)
t,lon of the closest TV, i.e., TV i, predicted to be in

front (p
(i)
lon,t > p

(0)
lon,t) and on the same lane (m

(i)
t,lat = m

(0)
t,lat)

as the AV according to τn and the associated s̄τn,κ:

Z front
t,τn :=

{
p
(0)
lon,t | p

(0)
lon,t ≤ p

(i)
t,lon − dfront + λfront

t,κ ,

i ∈ s̄τn,κ, ∀κ ∈ {1, ...,K}} .
(8)

Analogously, the AV is set to stay in front of the predicted

position p
(i)
T,lon − drear of the last prediction step T of the

closest following TV (p
(i)
0,lon < p

(0)
0,lon), i.e., TV i, being in the

same lane (m
(i)
t,lat = m

(0)
t,lat), however, traveling initially in the

other lane (m
(i)
0,lat �= m

(0)
0,lat) minus a violation margin drear:

Zrear
t,τn :=

{
p
(0)
lon,t | p

(0)
lon,t ≥ p

(i)
T,lon − drear − λrear

t,κ ,

i ∈ s̄τn,κ, ∀κ ∈ {1, ...,K}} .
(9)

We neglect the lateral component such that, in each time step,

the leading and following vehicle is chosen as specified in

the TV scenario s̄τn,κ. To avoid infeasibility if a leading or

following target vehicle merges closely in front or behind

of the AV, the safety distances are implemented via soft

constraints using the slack variables 0 ≤ λrear
t,κ ≤ 100 and

0 ≤ λfront
t,κ ≤ 100, which are penalized by the same scalar

factor ξ > 0 in the cost function.

The system dynamics in (7b) consist of a point mass model

A =

[
1 Δt
0 1

]
, B =

[
1
2Δt2

Δt

]
, (10)

in the form of xt+1 = Axt + But, as a satisfactory choice

for motion planning [33]. The state xt := [p
(0)
t,lon, v

(0)
t,lon] ∈ R

2

is composed of the longitudinal position and velocity and the

input ut = a
(0)
t,lon ∈ R of the longitudinal acceleration.

The architecture aims to find the optimal TDO τ∗n that

minimizes the cost Jτn :

τ∗n = argmin
τn

Jτn . (11)

To this end, we define (7a) as the sum over t of velocity

tracking cost η‖vt,ref − v
(0)
lon,t‖2, input cost ‖ut‖2μ as well as

front and rear safety margin costs ξ‖λfront
t,κ ‖2 and ξ‖λrear

t,κ ‖2:

min
u

T∑
t=1

η‖vt,ref − v
(0)
t,lon‖2+‖ut‖2μ+ξ‖λrear

t,κ ‖2+ξ‖λfront
t,κ ‖2.

(12)

The cost for a TDO is then defined by

Jτn =
T∑

t=1

η‖vt,ref − v
∗(0)
t,lon‖2+ξ‖λ∗rear

t,κ ‖2, (13)

using the optimal solutions v
∗(0)
lon,t and λ∗rear

t,κ from (7). We

conduct this differentiation to have a planned trajectory that

still satisfies other constraints such as a front safety margin or

input cost which, however, are not considered as reasonable

criteria for making a strategic decision. Situations where each

lane is equally favorable are addressed by adding a bias to Jτn
if the tactical decision foresees a lane change.

V. RESULTS & DISCUSSION

We compare the interaction-aware motion planning archi-

tecture to a baseline approach using the microscopic traffic

simulator SUMO (Simulation of Urban Mobility) [34]. The

baseline uses the same architecture, however assuming veloc-

ity and lane keeping predictions for all surrounding vehicles. In

both cases, the input calculated by the SCMPC for the optimal

TDO is applied to (10) in order to update the longitudinal

position. For simplicity, the AV directly performs the lateral

maneuver of the selected TDO. For simulating the behavior

of traffic participants, we set up SUMO to use the Extended-

Intelligent-Driver-Model (EIDM) [35] as a state-of-the-art
interaction model. Full state measurement is assumed. The

MPC is implemented in Python using the Gurobi solver [36].

One planning step takes approx. 0.7 seconds on a quad core

Intel Core i5-10210U CPU @ 1.60 GHz and 16 GB RAM.

The traffic prediction is configured with tuning parameters

g1 = 0.1 and g2 = 5, a horizon length of 6 seconds with
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a step time of 2 seconds and the acceleration in longitudinal

maneuvers a = 2m/s2. The SCMPC weights are η = 100, ξ =

50, 000, and μ = 1. The constraints are v
(0)
t,lon ∈ [0, 30]m/s,

a
(0)
t,lon ∈ [−4, 4]m/s2 and the safety distances dfront = 50 m,

drear = 100 m. The sampling time for the SCMPC is chosen

to be 0.1 s. The desired velocity vref is set to 30 m
s . For each

tactical decision option, the K = 10 target vehicle scenarios

s̄τn,κ with the highest probability score are considered. We

perform a pre-selection of AV maneuver sequences to restrict

the number of TDOs τn to N = 4. Each option consists of

velocity keeping and keeping the lane or changing the lane at

one of the three time steps.

In order to account for the road geometry, three adjustments

are made: (i) TVs driving on the upper lane are considered

as partial-interaction-aware vehicles, i.e., vehicles which are

considered to keep the lane in the traffic prediction, (ii) as soon

as the AV switches to the upper lane, only the lane keeping

TDO is possible for the EV. Lastly, (iii) the merging zone is

handled analogously to a vehicle with zero velocity placed at

350 m in the lower lane.

Simulation results for two exemplary highway merging

scenes are shown for three time steps. Both scenes consist

of five vehicles traveling from left to right. The leading TV

on the upper lane is set as non-interaction-aware vehicle.

Predicted positions are represented by dots. Squares indicate

the predicted positions assuming velocity keeping.

A. Case Study 1

First, the behavior of the baseline method is shown in Figure

2. The blue vehicle on the upper lane drives at a higher speed

than the AV. Approaching the end of the lane, the AV chooses

to slow down and keep the lower lane. A closer look at the cost

of each TDO (see Figure 4) reveals that this is the preferable

choice. Since the baseline assumes the blue vehicle keeps its

speed, an undesirable rear safety distance cost would result

from a merging maneuver. Subsequently, the AV is forced to

keep its lane until a complete standstill.

In Figure 3, the interaction-aware approach is demonstrated

for the same scene. Instead of keeping the lane, the AV

makes a lane change decision. Paying attention to the default

predicted positions, indicated by the square markers in Figure

5, it can be seen that the blue vehicle is expected to keep

its velocity if the AV decides to stay in the lower lane.

However, in case of a lane change decision, the interaction-

aware approach expects the blue vehicle to yield in reaction,

opening up a favorable merging opportunity.

B. Case Study 2

In a second scene, the roles are inverted. This time, the

blue vehicle traveling in the front on the lower lane attempts

to change the lane while approaching the merging zone. Since

the baseline expects the TV to keep its lane it continues to keep

the reference speed, leading nearly to a collision as seen in

Figure 6. In contrast, the interaction-aware method anticipates

the intention correctly and slows down in advance (Figure 7).

VI. CONCLUSION

We demonstrate an interaction-aware decision making and

motion planning architecture for highway merging situations

which aims to leverage the impact of the autonomous ve-

hicle on surrounding road users in order to make strategic

lane-change decisions to minimizing the slowdown of the

autonomous vehicle and improving the overall awareness for

the behavior of traffic participants. In the simulation study,

we observe significant improvements in handling complex

merging situations in free-flow highway traffic. The results

highlight that the architecture is be able to successfully antici-

pate the braking maneuver of the target vehicle as a reaction to

changing to the left lane preventing a strong slow down for the

autonomous vehicle. Further, we show that the algorithm can

enhance the safety in some situations by braking proactively

to increase the safety margin when recognizing that a leading

target vehicle has the intention to merge.
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[4] M.C. Campi, A. Carè, and S. Garatti, ‘The scenario approach: A tool at
the service of data-driven decision-making‘, Annual Reviews in Control,
vol. 52, 2021, pp. 1-17.

[5] Kensbock, Robin, Maryam Nezami and Georg Schildbach. “Scenario-
Based Decision-Making, Planning and Control for Interaction-Aware
Autonomous Driving on Highways.” 2023 IEEE Intelligent Vehicles
Symposium (IV) (2023): 1-6.

[6] M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard, and D. Wollherr, ‘A
game-theoretic approach to replanning-aware interactive scene prediction
and planning’, IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3981–3992,
2016.

[7] Nair, Siddharth H., Vijay Govindarajan, Theresa Lin, Yan Wang, Eric H.
Tseng and Francesco Borrelli. “Stochastic MPC with Dual Control for
Autonomous Driving with Multi-Modal Interaction-Aware Predictions.”
ArXiv abs/2208.03525 (2022): n. pag.

[8] Nair, Siddharth H., Eric H. Tseng and Francesco Borrelli. “Collision
Avoidance for Dynamic Obstacles with Uncertain Predictions using
Model Predictive Control.” 2022 IEEE 61st Conference on Decision and
Control (CDC) (2022): 5267-5272.
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Fig. 3. Interaction-aware architecture: As the safety margin (blue area) shrinks, the autonomous vehicle (red) decides to change the lane at t = 1s in front
of the blue target vehicle.
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Fig. 5. Interaction-aware architecture: Predictions for two tactical decision options τn of the autonomous vehicle (red). The blue vehicle is predicted to slow
down if the AV changes the lane, highlighted by comparing default (squares) and interaction-aware predictions (dots).
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Fig. 6. Non-interaction-aware baseline: The blue target vehicle is predicted to keep the lane. A near collision follows as the autonomous vehicle continues
to travel with the reference speed.
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Fig. 7. Interaction-aware architecture: The lane change of the blue target vehicle is predicted. The autonomous vehicle slows down to maintain the safety
margin (red area).
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Coaction between Automobiles and Mobile Robots
- Interoperability for Affordable Last Mile Delivery

Solutions
Mayank Yogesh Khandelwal1, Swaraj Tendulkar1, G. Alexander Kolbai2, Frank Schrödel1

Abstract—This research paper delves into the interplay be-
tween autonomous mobile robots and automobiles, examining
their interoperability, shared software stacks, and potential
vehicle-to-robot communication. It underscores the critical role
of ROS (Robot Operating System), simulation environments like
CARLA and Autoware, while addressing the challenges faced
by mobile robots in environments designed for automobiles. The
study explores hurdles faced by companies in robot development,
such as the absence of serial production leading to increased costs.
It further emphasizes the quest for a sensor set and algorithm
that balances cost efficiency with safety. Navigational challenges
for outdoor robots are dissected. The research also touches
on the intricate communication required with pedestrians and
vehicles. The paper advocates for the integration of Global navi-
gation satellite system (GNSS) and Depth perception technology
to enhance navigation, emphasizing the need for collaborative
efforts to address urban challenges. The ultimate aim is to
foster collaboration between vehicles and mobile robots, ensuring
interoperability for affordable last-mile delivery solutions. while
also acknowledging and resolving the complex challenges faced
by developers in this evolving field.

Index Terms—Robot Operating System, Vehicle-to-Robot
Communication, GNSS Sensors, Mobile Robot Challenges, Last
Mile Delivery Solutions, Interoperability

I. INTRODUCTION

In the dynamic urban mobility landscape, the interplay

between autonomous mobile robots and vehicles unfolds a

shared tapestry of challenges. Central to both entities is the

formidable task of processing vast real-time data acquired

from perception sensors, encompassing critical insights into

traffic conditions, pedestrian dynamics, environmental shifts,

and potential obstacles [16]. Efficiently navigating this data is

pivotal for ensuring the safe and reliable operation of these

autonomous systems. Moreover, the constrained environments

of sidewalks, where these robots predominantly operate, pose

unique challenges due to the diverse range of users sharing

limited space [3]. Compounding these complexities are the

hurdles associated with developing and deploying software

stacks, requiring careful attention to compatibility, security,

and reliability.

Mayank Yogesh Khandelwal1, Swaraj Tendulkar1, Frank Schrödel1 is with
Faculty of Mechanical Engineering, Schmalkalden University of Applied
Sciences, 98574 Schmalkalden, Germany.
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Companies at the forefront of autonomous deliveries, in-

cluding Starship Technologies, Uber, FedEx, Waymo, Amazon

etc, face a myriad of challenges in achieving the efficient

and widespread implementation of autonomous delivery sys-

tems[4]. Ensuring the safety of low-cost autonomous systems,

particularly in pedestrian-heavy urban environments, emerges

as a critical concern. The continuous technological challenge

lies in reliably detecting and avoiding obstacles, ranging

from pedestrians, pets and cyclists to other vehicles. Robust

real-time perception and decision-making capabilities become

even more complex in the face of environmental factors and

intricate traffic scenarios. Even the public trust in autonomous

delivery systems plays a pivotal role in their adoption, ne-

cessitating strategies to address these concerns. Furthermore,

successful deployment requires robust infrastructure support,

encompassing smart city technology, dedicated pickup and

drop-off points, and seamless integration with existing trans-

portation networks, government laws and policies. Adverse

weather conditions and extreme temperatures add an additional

layer of complexity, impacting the consistency of autonomous

system performance [5].

Fig. 1. Sensor Setup on delivery-me Robot
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In the realm of urban logistics, low-cost delivery robots

have emerged as a promising solution for last-mile delivery

services. This paper explores the synergies between these

robots, particularly those from delivery-me, as illustrated in

figure 1, and an autonomous vehicle. Shared core principles

of perception, decision-making, and control form the basis for

a collaborative approach [1]. Aligning their capabilities unveils

the potential for these robots to seamlessly operate in intricate

urban environments, providing efficient and reliable delivery

services.

The establishment of effective vehicle-to-robot communica-

tion adds another layer of intricacy, demanding seamless inte-

gration of diverse software and hardware systems. Envisioned

scenarios include collaborative traffic management, real-time

data sharing for dynamic route planning, and enhanced situ-

ational awareness for safer navigation [6]. Integrating robots

into this ecosystem not only amplifies their capabilities but

also contributes to the broader transformation of urban logis-

tics and transportation [4].

Using the example of GNSS data, the research illustrates the

need for distinct waypoints for mobile robots. While global

positioning coordinates are readily available, such as those

provided by widely-used mapping services, are optimal for

vehicles, they fall short for mobile robots. The reliance on a

High-Quality (HQ) Map specifically tailored for an operational

environment, is imperative for autonomous robots. Thus, the

integration of GNSS sensors for mapping and creating HQ

maps separately becomes a necessity. Results from GNSS and

camera lane detection showcase practical solutions, further

contributing to the comprehensive understanding of these

challenges in urban mobility.

The delivery-me robot stands out as a cost-effective solu-

tion in the domain of autonomous last-mile delivery [7]. Its

sensor suite, as portrayed in figure 1, which includes Inertial

Measurement Unit (IMU), Lidar, Stereo Depth Cameras [7],

and an onboard computer, closely mirrors components used

in the automotive industry. This alignment not only reduces

procurement and operational costs but also underscores the

reliability and robustness of these components. Scalability is

a key advantage, allowing seamless adaptation to evolving

delivery needs without significant additional costs. Relying on

automotive-inspired components translates into lower mainte-

nance costs, thanks to readily available parts and established

service networks.

Hence this study explores the complex difficulties en-

countered by autonomous systems, with a specific focus on

integrating low-cost delivery robots into urban mobility sce-

narios. Our exploration covers shared principles, technology

integration, and real-world applications. Contributing to the

discourse on developing efficient last-mile delivery solutions

in complex urban settings. A key emphasis is placed on the

importance of High-Quality (HQ) maps tailored for mobile

robots, highlighting the challenges unique to their navigation

compared to full-scale vehicles.

II. COMMONALITIES AND CHALLENGES: AUTONOMOUS

VEHICLES VS. DELIVERY ROBOTS

Introduction to Shared Principles
In the rapidly evolving landscape of urban mobility, au-

tonomous vehicles and low-cost delivery robots encounter a

shared set of challenges rooted in their commonalities. More-

over both share essential hardware components, as presented

in figure 2, that serve as the backbone of their operational

capabilities. Both systems utilize advanced sensor suites, in-

cluding LIDAR for accurate environmental mapping and stereo

cameras for enhanced perception through depth information.

The motor and encoder units play a pivotal role in translating

decisions into precise physical actions, facilitating accurate

navigation. Additionally, sophisticated battery management

and distribution units ensure optimal power supply, addressing

the energy requirements of these autonomous systems.

Fig. 2. Hardware Architecture [7]]

Both depend on sophisticated algorithms and well-

structured software architectures to navigate, perceive and

control their movements. The intricate software frameworks

serve as the bedrock of their operations, facilitating tasks such

as route planning, obstacle avoidance, and real-time decision-

making. In the context of software architecture, both entities

share commonalities in terms of perception, decision-making,

and control principles. This convergence allows principles

developed for one to be seamlessly adapted, refined, and

shared with the other. The synergy in software architecture

not only promotes interoperability but also sets the stage for

collaborative advancements in autonomous urban mobility.

The need for real-time data processing also becomes a

critical focal point. Both entities must efficiently interpret vast

amounts of data acquired from sensors. This data encompasses

crucial information on dynamic environment. The challenge

lies not only in processing but also in responding to it

effectively to ensure the safe and reliable operation.
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Role of Robot Operating System
ROS emerges as a pivotal element in unifying the software

architecture of autonomous vehicles and delivery robots. It

provides a common framework that streamlines the devel-

opment and integration of diverse software components. Its

modular and open-source nature facilitates seamless commu-

nication between different modules, allowing for the efficient

deployment of algorithms across a spectrum of robotic appli-

cations. This shared reliance on ROS not only promotes con-

sistency in software development but also eases the challenges

associated with compatibility and integration.

Fig. 3. CARLA simulation where A and D : Generalized Visuals B: Depth
Information captured by a Camera C: Laser Scan obtained from a LIDAR

Simulation environments, such as CARLA and Autoware,

play a crucial role in shaping and refining the behavior of both

autonomous vehicles and delivery robots. These environments

offer a controlled virtual space for testing, optimizing, and

validating algorithms before real-world deployment. Simu-

lation environments subject systems to different scenarios,

aiding in identifying and addressing potential challenges. This

contributes to enhancing the overall robustness of autonomous

systems, as shown in Figure 3.

In this exploration of shared principles, we lay the ground-

work for a comprehensive understanding of the interplay

between vehicles and robots. By emphasizing their common-

alities in software and hardware stacks, the role of ROS, and

the utilization of simulation environments, we set the stage

for a Detailed analysis of the challenges and collaborative

potentials.

Infrastructure Disparity: Vehicles vs. Robots
Navigating the ever-changing landscapes of urban envi-

ronments presents a shared set of challenges for both cars

and robots within their Operational Design Domains (ODDs).

While vehicles benefit from well-defined environments, estab-

lished infrastructure, and public acceptance, robots face unique

hurdles in diverse user interactions, and congested spaces.

These, with their structured roadways, standardized traffic

rules, and designated lanes, operate within an environment

designed to accommodate them. The integration of vehicles

into urban settings is streamlined, with clear guidelines, in-

frastructure established to support their movements and even

the public acceptance is well-established.

Contrastingly, mobile robots operating on sidewalks en-

counter distinctive challenges posed by pedestrian-heavy en-

vironments. Negotiating through diverse user interactions be-

comes complex as robots share confined spaces with pedes-

trians. Unlike automobiles, robots must adapt to the unpre-

dictable movements of pedestrians, varied speeds, and the

intricacies of navigating crowded walkways. Confined spaces,

originally designed for foot traffic, amplify the difficulty,

requiring agile and adaptive systems for robots to operate

efficiently.

Moreover, the established infrastructure, public acceptance,

and regulatory frameworks that favor automobiles become

hurdles for mobile robots. Sidewalks, primarily intended for

Humans, lack predefined rules for robotic operations. Public

acceptance of robots sharing walkways with pedestrians is an

ongoing challenge, as societal norms and expectations are still

evolving [3].

The convenience experienced by vehicles in a well-defined

urban ODD contrasts sharply with the challenges faced by

mobile robots navigating through diverse and unpredictable

confined spaces. While vehicles seamlessly integrate into

established urban infrastructure, mobile robots are forging a

path through uncharted territory. Grappling with issues related

to user acceptance, social norms, and the absence of clear

guidelines for operation within their designated operational

domains. As urban environments continue to evolve, address-

ing these challenges is crucial for the successful integration of

mobile robots into the fabric of dynamic urban spaces.

Navigating Challenges in Constrained Environments
The execution of drive domain tasks within confined settings

presents distinctive challenges for both vehicles and deliv-

ery robots. This section explores the specific hurdles faced,

emphasizing the profound impact of size differences on their

navigation and operational precision. Unlike vehicles, which

can tolerate shifts on the road, even minor offsets for delivery

robots navigating pavements can lead to potential hazards. For

instance, a 20-30 cm offset in localization poses a significant

risk for a robot, potentially causing it to veer off the pave-

ment onto the road. The necessity for precise localization on

sidewalks demands advanced perception systems for delivery

robots, making the seamless execution of drive domain tasks

a complex undertaking in constrained urban environments.

Computation Power and Sensor Limitations
Analyzing the constraints of low computation powers in

delivery robots unveils a critical aspect of their operational

challenges. Limited space and weight restrictions inherent to

robots impact their computational capabilities, setting them

apart from full-scale vehicles. Unlike cars, which can house

powerful computers and robust power sources, delivery robots

face restrictions that affect their range, decision-making speed,

and overall operational efficiency. This section delves into

the implications of these constraints on decision-making pro-

cesses, emphasizing the need for advancements in computa-

tional capabilities within the confined parameters of size and

weight.
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Moreover, the discussion extends to the impact of limited

sensors and range on the decision-making processes of de-

livery robots. Comparing with vehicles emphasizes a clear

difference in capabilities. While cars benefit from an array

of sensors and extended range, small robots on footpaths deal

with sensor limitations that impact their ability to perceive

and respond to dynamic urban environments. Additionally, the

section sheds light on how offsets in sensor readings affect

small robots navigating footpaths compared to vehicles on

highways. The precision required for a robot to interpret sensor

readings becomes paramount in confined spaces, where minor

deviations can lead to potential hazards, contrasting with the

more forgiving dynamics of vehicles on broader roadways.

Hence, the unique constraints imposed by size differences

and limited computational capabilities underscore the need for

innovative solutions to enhance the operational efficiency and

safety of these autonomous entities.

III. CHALLENGES IN GNSS DATA FOR DELIVERY

ROBOTS: A CASE STUDY

The Need for HD Maps in Last-Mile Delivery
In the dynamic landscape of autonomous mobile robots, the

reliance on accurate localization is paramount for effective

navigation. The complex process of autonomous localization

relies on probabilistic data fusion techniques, integrating infor-

mation from various sensors to continually refine the robot’s

position and orientation. In this context, outdoor solutions ben-

efit from an essential resource, denied to indoor applications:

the global navigation satellite system.

Mobile robots often demand the creation of High-Definition

(HD) maps, also known as 3D maps [10]. These maps are

meticulously detailed, providing inch-perfect accuracy and

high environmental fidelity. Unlike traditional maps, HD maps

contain information about the precise positions of pedestrian

crossings, traffic lights/signs, barriers, and more as outlined

in figure 5. This level of detail is essential for autonomous

vehicles, compensating for map inaccuracies, but for delivery

robots, such discrepancies pose substantial challenges.

Fig. 4. Intricate details captured within a High-Definition (HD) Map [10]

Delivery robots face unique challenges, navigating

pedestrian-heavy environments where conventional maps fall

short. HD maps for robots encompass complex data, including

roads, crossings, pavements, landmarks, dynamic obstacles

and other terrain features. While autonomous vehicles can

tolerate certain inaccuracies in traditional maps, delivery

robots require a higher level of precision due to the intricacies

of their deployment areas.

Creating these HD maps involves intricate mapping pro-

cesses, ensuring that the robot can interpret and navigate the

environment with precision. The goal is to provide the robot

with a roadmap that aligns with the reality of footpaths, pave-

ments, and other pedestrian-centric spaces. These maps are

critical for last-mile delivery applications, where robots must

navigate seamlessly in diverse and crowded urban settings.

IV. TESTING

To address the inadequacy of traditional GPS data for

delivery robots, experiments were conducted to showcase the

disparities between conventional maps and delivery-specific

HD maps. Conventional mapping platforms like Google, Ap-

ple, and OpenStreetMap, while suitable for human decision-

making, lack the precision required for robot navigation in

intricate urban environments [12].

Fig. 5. Points derived from Google Maps (Blue) compared to Waypoints
obtained through ANavS GNSS (Yellow)

These maps often misrepresent waypoints for pedestrians,

placing them on roads instead of footpaths. As a result,

relying on these waypoints directly could lead a robot astray,

emphasizing the need for tailored maps specific to the robot’s

deployment area. Significant offset can be seen in figure 5.

Implementing the ANavS Global Navigation Satellite Sys-

tem module, specifically the Multi-Sensor Real-Time Kine-

matic Module, becomes pivotal for achieving centimeter-level

accuracy in localization. ANavS is a company specializing in

the development of highly accurate positioning and navigation

solutions with sensor fusion and Artificial Intelligence.
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Fig. 6. AUTOWARE-ROS Simulation and Visualization of test Environment

The GNSS, with budget multi-frequency/multi-constellation

receivers, allows the application of Real-Time Kinematic tech-

niques. The ROS middle-ware, widely adopted in the robotics

community, facilitates seamless integration of the RTK code.

Simulation software assists in creating and visualizing the

robot’s environment, offering a platform for testing and re-

fining its behavior before actual deployment. Here, the start

and end positions of the route are marked, and the robot’s

behavior is simulated [13]. The robot, equipped with various

sensors, replicates real-world scenarios. This simulation helps

refine algorithms for real-world deployment as highlighted in

figure 6.

Output solution streams from the ANavS GNSS module

are configured independently and forwarded through various

devices, including serial port, TCP socket, NTRIP (Networked

Transport of RTCM via Internet Protocol) server, or stored

in a local file (ROS Bag File) [9]. All parameters related to

processing options and input/output streams are stored in a

configuration file at the start of the program.

Fig. 7. Multi-Sensor Real-Time Kinematic (RTK) on the ANavS Graphical
User Interface (GUI)

The ANavS provides a command line console, reachable

over a telnet connection, for process monitoring and control.

This allows for human supervision of the precise positioning

and calibration process, ensuring the RTK server thread’s

effective operation as seen in figure 7 [15]. The RTK technique

stands out for its rapid convergence time and high positioning

accuracy, reaching centimeter-level precision almost instanta-

neously with multi-frequency receivers.

In the ROS environment, nodes communicate through top-

ics, exchanging messages to define the structure of transmitted

data. Several ROS messages are necessary to accommodate the

data of different output formats conveniently. The independent

operation of output streams allows the combination of different

devices to communicate information simultaneously [9].

We incorporate GNSS way-points, bearing vectors, and

distances from the robot’s camera to patch features as state

vectors in our Kalman filter, demonstrating achievable po-

sitioning accuracies. The assumption of constant way-points

and the robot’s low-speed movement simplifies the state space

model. We incorporate the robot’s position change into the

process noise, using a Kalman filter for GNSS. The approach

involves an iterative process, considering linearization of range

measurements and specific movements for waypoint conver-

gence and robot positions.

For visual-inertial odometry, we employ a Kalman filter

processing images from a camera and measurements from an

inertial sensor. Built on the Robust Visual-Inertial Odometry

(ROVIO) framework, it tracks the vectors and distance of

each patch feature as a state parameter, alongside the posi-

tion, velocity, attitude, and biases of the IMU. The process

involves predicting state parameters using inertial measure-

ments, searching for feature patch locations in new camera

images, and updating the state vector based on found feature

patches. Position, velocity, and attitude estimates obtained

serve as measurements for the main EKF Localization as

shown in figure 8. This main filter, incorporating all sensor

readings, updates its state vector with all the new parameters

including the carrier phase ambiguities, pseudorange multipath

errors, and wheel odometry.
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Fig. 8. Architecture for Sensor Fusion of GNSS, IMU, Wheel-Odometry and
Visual Odometry in Kalman Filter [9]

In a typical scenario, the first output stream publishes the

robot’s position in the East North Up (ENU) reference frame.

Simultaneously, the second output, independent of the first,

forwards NMEA output format through a TCP socket. This

flexibility in communication ensures the efficient utilization

of output data for various purposes[11].

The comprehensive case study explores the intricate chal-

lenges faced by robots in the context of localization. From the

need for tailored HD maps to the implementation of advanced

GNSS, each aspect plays a crucial role in enhancing the

precision and reliability of delivery robots. Further integrating

it with ROS as middleware and simulation environments,

demonstrates a comprehensive method. to addressing the

unique challenges posed by dynamic urban environments.

CONCLUSION

In conclusion, this paper sheds light on the intricate chal-

lenges faced by delivery robots in navigating dynamic urban

landscapes, with a particular focus on GNSS data and localiza-

tion. The significance of accurate localization for the effective

functioning of autonomous mobile robots is a recurring theme,

emphasizing the complexity inherent in the perception-driven

process of autonomous localization. The distinction between

traditional and High-Definition maps underscores the critical

need for precision in last-mile delivery applications, where

delivery robots traverse intricate pedestrian-centric spaces.

The integration of the GNSS module, specifically the

MSRTK Module, emerges as a pivotal solution to achieve

centimeter-level accuracy in localization [9]. The collabo-

rative approach of integrating this module with the widely

adopted Robot Operating System and simulation environments

exemplifies a comprehensive strategy to address the unique

challenges faced by delivery robots. Experiments showcasing

disparities between conventional maps and delivery-specific

HD maps highlight the inadequacy of traditional GNSS data

for robots operating in urban environments.

Looking into the future, the scope of this approach extends

beyond GNSS data. The inclusion of visuals obtained from

depth cameras, point clouds, and other sensor data offers

opportunities for sensor fusion approaches. By leveraging

extended Kalman filters, the fusion of multiple automotive

sensors promises precise localization and object detection dur-

ing the robot’s journey. This advanced sensor fusion approach

aims to refine the capabilities of delivery robots, enabling

seamless navigation and interaction in diverse and evolving

urban landscapes.

Moreover, the future envisions a collaborative ecosystem

where robots and vehicles work in tandem, leveraging shared

principles in software and hardware stacks. The need for

interoperability becomes crucial for the development and de-

ployment of affordable solutions. As vehicles and robots share

common challenges and environments, establishing seamless

communication is paramount. Envisioning a future where

autonomous systems can communicate effectively fosters a

collaborative environment, contributing to the broader trans-

formation of urban logistics and transportation. This interop-

erability not only enhances the capabilities of individual robots

and vehicles but also lays the foundation for a more efficient,

adaptive, and integrated urban mobility system.
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Abstract— This paper presents an AI-based system for
automated visual inspection of semiconductor components,
aimed at improving the Zero-Defect strategy in their manu-
facturing process. The system leverages unsupervised learning
using Variational Autoencoder to learn and compare images
of undamaged components to identify anomalies. An anomaly
score is devised to enable detection of even minor flaws on
the edges of components and decision rules are evaluated using
appropriate metrics. The proposed system surpasses the current
tape machine in detecting anomalies, hence contributing to
achieving the Zero-Defect strategy in semiconductor manufac-
turing.

I. INTRODUCTION

The semiconductor industry has experienced tremen-

dous growth in recent years, and with this growth comes

the need to optimize manufacturing processes to achieve

maximum productivity. In particular, ensuring the function-

ality and reliability of semiconductors is critical to the

performance and safety of devices and systems in various

industries such as automotive, mobile phones, televisions,

and computers [1].

To achieve high-quality standards, a Zero-Defect

strategy must be adopted to ensure that only fully func-

tional integrated circuits (ICs) are delivered to customers.

This strategy requires strict monitoring of the manufacturing

process through various inspection procedures, including

physical measurements and visual inspections of the ICs [2].

However, the current tape machine’s defect detection

process is not completely error-free, resulting in wrongly

identified functional ICs as defective and undetected defec-

tive ICs. Hence, there is a need to develop an AI-based

system to improve the classification of ICs in the Tape &

Reel, contributing to the Zero-Defect strategy.

II. CURRENT STATE OF SEMICONDUCTOR

INSPECTION IN THE TAPE & REEL

The final visual inspection of semiconductors is per-

formed by tape machines in the Tape & Reel stage of the

manufacturing process. This stage involves the packaging of

ICs in tape and reel for easy transportation and storage. The

sorting of ICs by tape machines has a direct impact on yield,

which is a crucial factor in assessing production efficiency.

Yield is defined as the ratio of deliverable ICs to the total

number of produced ICs [3]. Therefore, it is essential to sort

out only defective components during inspections to maintain

the highest possible yield.

A. Utilizing Tape Machines for Final Visual Inspection

The current classification mechanism of these tape

machines uses simple image processing functions to inspect

the ICs. An IC is set as a template and the inspection is

based on the number of white pixels that deviate from the

template. However, this method has limitations and can lead

to false negatives, where defective ICs are not detected.

To improve the classification of ICs in the Tape &

Reel, more advanced image processing techniques can be

employed. These techniques can detect even the smallest

defects that may be missed by the current tape machine.

Implementing these techniques can maximize yield and

improve production efficiency. Therefore, it is necessary to

explore new methods to improve the inspection process and

achieve the Zero-Defect strategy.

B. Defining the Requirements for an AI-Based Anomaly
Detection System for ICs

Semiconductor manufacturing is a complex process

that involves several stages of production, including cutting

wafers into individual ICs. However, such a process can

cause damage to the edges of the components, which can

negatively impact their functionality. To ensure that defective

ICs are sorted out while minimizing the overall yield, we de-

velop an appropriate AI-based system for anomaly detection

on the IC surface.

To begin with, the desired model must be placed after

the tape machines. These machines perform a preliminary

filtering by carrying out their usual classification of the ICs.

The developed model should then recheck the images on

which the tape machine does not detect any damage. If the

model detects any damage, the corresponding IC will be

sorted out.

To optimize the detection of defective ICs, anomalies

located at the edges of the ICs should be sorted out since

errors at the edge have a greater impact on functionality

compared to errors in the middle of the IC. Therefore, it

is crucial for the model to detect these types of anomalies at

all times.

It is also essential to determine the types of damage to

ICs the model should detect. For instance, scratches caused

by marking are mainly superficial and do not impair the

functionality of the ICs. Conversely, damage to the edges

of the ICs, which can be severe, can significantly impact the
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(a) Defect IC (b) Functional IC

Fig. 1. Representation of two ICs with anomalies on the surface, where
(a) is defective and (b) is intact.

functionality of the ICs. As such, the model should specialize

in detecting such anomalies.

For comparison, fig. 1(a) shows a corresponding IC

with damage at the upper left edge, which can be assumed

to have completely broken off a significant portion of the

component at the corresponding edge. Fig. 1(b) shows a IC

with a scratch in the middle of the marking, which is assumed

to have no functional impairment.

III. METHODS

The development of an AI-based system that can

classify integrated circuits (ICs) based on photos taken by

tape machines requires a modification of a Variational Au-

toencoder (VAE). This chapter focuses on the optimization of

a VAE to accurately reconstruct images without anomalies.

The VAE is trained to model the data distribution of images

of ICs without existing anomalies, allowing it to generate

images without anomalies and compare them with input

images. The difference between the images can be used for

anomaly localization and identification.

A. The Concept of Autoencoder

Autoencoders (AEs) are neural networks that are

trained through unsupervised learning to learn reconstruc-

tions that resemble the original input. They have a wide range

of potential uses, including clustering tasks and anomaly

detection [4]. An undercomplete AE, which is the minimum

configuration for an AE, is presented in fig. 2 [5]. The

encoder’s task is to compress the input vector using a lower-

dimensional latent variable in the latent space, while the

decoder’s task is to reconstruct the input vector using the

latent variable as input [6]. The encoder and decoder of

Fig. 2. Structure of an undercomplete Autoencoder network [6].

an AE are trained to minimize the loss function given by

equation

argmin
e,d

E[V (x, d(e(x)))], (1)

where the chosen loss function V is typically the Mean-

Squared-Error (MSE) [6].

AEs can also be used for anomaly detection, par-

ticularly in industrial applications, where they are trained

on normal images and subsequently tested on anomalous

images. However, due to the high complexity of images,

AEs may overfit to the training data and perform poorly on

anomalous images [8].

To address this limitation, the VAE adds a regulariza-

tion term to the loss function, ensuring that the latent space

is sufficiently regulated so that small variations within the

space have only a small impact on the decoded output. This

prevents overfitting and improves the accuracy of anomaly

detection. The concept of an AE is then expanded to a VAE,

which introduces the ability to generate input images from

a predefined latent space [9].

B. Structure and Loss Function of the Variational Autoen-
coder

The VAE is an extension of the AE, which enables

the generation of new images similar to the training data.

The VAE consists of two neural networks: the inference

network (encoder) and the generative network (decoder). The

encoder maps the input image x to a distribution qφφφ(z|x),
where z is a latent variable with a lower dimensionality than

x. The decoder maps z to the reconstructed image x̂ using

a distribution pθθθ(x|z). The encoder and decoder are trained

jointly to minimize the reconstruction error between the input

image and the reconstructed image [10]. The architecture of

the VAE can be seen in fig. 3.

To ensure that the latent variable z follows a prior

distribution, typically a standard normal distribution N (0, 1),
a regularization term KL called Kullback-Leibler Divergence

is added to the loss function. It measures the divergence

between the inferred distribution qφφφ(z|x) and the prior dis-

tribution. The loss function of the VAE is the sum of the

reconstruction error and the regularization term, defined as:

L(x;θθθ,φφφ) = −Eqφφφ(z|x)[log pθθθ(x|z)]︸ ︷︷ ︸
reconstruction error

+β ·KL(qφφφ(z|x)||N (0, 1))︸ ︷︷ ︸
regularization term

(2)

Fig. 3. Architectur of a Variations Autoencoder [10].
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where E denotes the expectation over the latent variable z
and β > 0 serves as a weighting parameter. The reconstruc-

tion error measures the difference between the input image

and the reconstructed image, while the regularization term

encourages the latent variable to follow a prior distribution.

The parameters θθθ and φφφ are learned by backpropagation

through the loss function. By incorporating a weighting

factor, β > 1, in the loss function, the regularization term’s

strength is increased, leading to a more stable and robust

disentanglement [7].

The VAE can generate new images by sampling from the

prior distribution and using the decoder to generate a new

image. The quality of the generated images depends on

the representation capabilities of the encoder and decoder

networks and the choice of the prior distribution [8].

IV. AUTOMATIC CLASSIFICATION OF

SEMICONDUCTOR ANOMALIES

The focus of this chapter is on the detection of

anomalies at the edges of ICs, which can be very small and

when optimally reconstructed, may have only a low score.

The challenge here is to detect such anomalies with a low

MSE and distinguish them from the input images that have

a score due to simple inaccuracies in the reconstruction.

A. Improved Anomaly Detection by Focusing on Relevant
Areas

In order to detect fine anomalies on ICs, it is impor-

tant to use an appropriate score for decision-making. The

Mean-Squared-Error (MSE) is defined as

MSE =
1

n

n∑
i=1

(xi − x̂i)
2, (3)

where xi represents a pixel in the input image X and x̂i

represents the corresponding pixel in the reconstructed image

X̂ and commonly used for evaluating the reconstruction

quality. However, since there can also be differences between

input and reconstruction images in the absence of anomalies,

it is necessary to narrow down the relevant areas that are

likely to contain anomalies. To demonstrate the effectiveness

of focusing on relevant areas, we consider the example

shown in fig. 4(a). An anomaly is present at the lower left

corner of the IC and its detection is particularly challenging

due to its small size. Fig. 4(b) shows the reconstruction

image generated by the Variational Autoencoder, which is

(a) NOK (b) OK

Fig. 4. Difference Map with MSE: 0.6 · 10−3

very similar to the input image. The MSE of both anomaly

maps is 0.0006 and not able to distinguish them by setting

an threshold. To improve the anomaly detection, we only

consider the pixels with high difference values. In this study

we use 1% of the highest difference pixel. This way the

MSE of fig. 4(a) changes to 0.0121 and fig. 4(b) to 0.0058

and easily set a threshold.

B. Local Anomaly Weighting

In addition to considering that anomalies on the edge

should be detected more often than those in the center, as

described in section II-B, errors occurring on the edge should

have a stronger influence on the MSE calculation and thus

on the anomaly score. To achieve this, a stronger weighting

of the edge pixels is used. Since the location of an IC can

vary in each image, the range of possible coordinates is

limited. Therefore, the range of the edge area that needs to

be weighted can be defined as the outer 10% of pixels in the

image. The edge pixels are then weighted by a factor of 20

and incorporated into the MSE calculation for the anomaly

score.

The weighted MSE is defined as follows:

AS =
1

1
100 · n

1
100 ·n∑
i=1

a(i)w(i), ai = (xi − x̂i)
2 (4)

where AS is the anomaly score, n is the total number of

pixels in the image, a(i) is sorted in descending order with

xi as the pixel intensity value of the input image, x̂i is the

pixel intensity value of the reconstructed image and w(i) is

a function that weights the pixels based on their position.

The function w is defined as follows:

w(i) =

{
1, (

√
n · l < i <

√
n · u) ∧ (l < i mod

√
n ≤ u)

20, otherwise,

where l = �0.1 ·√n� and u = �0.9 ·√n�. The first condition

of the logical operator removes the lower and upper 10%

of edge of the image matrix. The sceond condition of the

logical operator removes the left and right edge of the image.

Thus the first condition of w(i) indicate the center of the

image and the second condition applies a factor of 20 to

those pixels that are on the edge of the image. Fig. 5(a)

shows the anomaly maps without weighting the edge and an

anomaly in the center appears. By using the weighted MSE

of the formula 4 the anomaly disappears in fig. 5(b).

(a) Without Edge
Weighting

(b) With Edge Weight-
ing

Fig. 5. Illustration the effect of Local Anomaly Weighting
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C. Z-Score Method as the Decision Rule

Detecting anomalies is an essential task in several

fields, including pattern recognition, computer vision, and

image processing. The z-score technique is a commonly used

method for anomaly detection. It postulates that anomaly

score values are normally distributed with unknown param-

eters, i.e., mean and variance. According to this method,

anomaly score values that contain anomalies come from a

distinct distribution and are significantly different from the

average anomaly score values of all other images. The z-

score can be obtained from the anomaly score values by

computing the difference between the mean and dividing it

by the standard deviation [11].

However, the z-score has the disadvantage of being

a parametric statistical method that relies on assumptions. It

assumes a normal distribution, so a modified version of the

z-score should be used if the training dataset is not normally

distributed. The modified z-score replaces the mean with the

median and is calculated using the formula:

zmod =
AS −ASmed

c ·MAD

where ASmed is the median of the anomaly score

values from the training dataset, MAD is the median of the

absolute deviations from the median, and c is a correction

factor. The constant c = 1.4826 is required if MAD is used

as the standard deviation of a distribution, as it corresponds

to the standard deviation of a normal distribution [12].

A threshold can be set using z-scores, where any z-

score above or below this threshold is considered an outlier

and corresponds to an anomaly semiconductor device. The

rule is that all values that are three standard deviations away

from the mean should be marked as outliers [11].

V. RESULTS

To evaluate the developed AI-based system and the

tape machine, a test dataset is first constructed. To obtain

a representative sample of the available data through the

tape machine, the sample size of the test dataset T is set

to 1000. This is to ensure that there are enough components

with anomalies present in the evaluation. This dataset is

assessed by experts at Elmos Semiconductor SE to evaluate

the presence of anomalies for the purpose of this work. The

test dataset TE consists of 77 images of ICs with anomalies

present and 923 images without indications of anomalies.

The index E is used to identify T as having classifications

made by experts at Elmos Semiconductor SE.

After constructing a test dataset, the next step is to

select an appropriate metric to evaluate the performance

of the developed AI-based system and the tape machine.

Precision and Recall are two important metrics used in

machine learning to evaluate the performance of models

in detecting anomalies. Precision measures the proportion

of predicted positive cases that are actually positive, while

Recall measures the proportion of actual positive cases that

are correctly identified by the model. The Fβ-Score is a

metric that combines these two metrics into a single value. It

is calculated as the harmonic mean of Precision and Recall

with the equation

Fβ =
1 + β2

β2

Re
+

1

Pr

=
(β2 + 1) · TP

(β2 + 1) · TP + β2 · FN + FP
, (5)

where β2 is a weighting parameter that determines the

relative importance of Precision and Recall. A value of

β = 1 indicates equal weighting, while a higher value

of β places more emphasis on Recall and a lower value

places more emphasis on Precision. The Fβ-Score ranges

from 0 to 1, with higher values indicating better performance

of the model in detecting positive cases while minimizing

false positives. The semiconductor industry follows the Zero-

Defect strategy that aims to deliver only defect-free ICs

to customers. Therefore the Recall will be significantly

weighted compared to Precision with β = 10.

A. Evaluating a Tape Machine

The performance of the tape machine’s anomaly de-

tection on dataset T was evaluated using a confusion matrix,

as shown in table I. Out of the 1000 images in the T , the tape

machine correctly classified 969 images, resulting in a true

positive (TP) count of 896 and a true negative (TN) count

of 73. However, the tape machine misclassified 27 images

as having an anomaly on the ICs, which were actually not

present. Furthermore, for 4 images where an anomaly was

present on the corresponding ICs, the tape machine failed to

detect the anomaly, resulting in false negatives (FN).

Predicted True Class
ΣΣΣClass Anomaly No Anomaly

Anomaly 73 27 100
No Anomaly 4 896 900

ΣΣΣ 77 923 1000

TABLE I

CONFUSION MATRIX OF THE TAPE MACHINE.

To better understand the performance of the tape

machine’s anomaly detection, the 4 images where the tape

machine failed to detect the anomalies is presented in fig. 6.

These images highlight the type of defects that were missed

by the tape machine’s detection system.

The F10-Score for the tape machine is 0.94526. This

value serves as the benchmark for the VAE-based system.

(a) Scratch (b) Bottom Right (c) Top Left (d) Top Middle

Fig. 6. Four Anomalous IC Surface Images Missed by Tape Machine
Anomaly Detection
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B. Evaluating the VAE-Based System

The modified z-score method was implemented in

a VAE-based system to detect anomalies in ICs and the

system’s performance results are summarized in table II. The

model predicted anomalies in 112 ICs, but upon further anal-

ysis, it was discovered that 35 of these ICs were anomaly-

free. However, the model accurately detected all ICs that

had actual anomalies, demonstrating the effectiveness of the

modified z-score method in detecting anomalies in ICs.

To evaluate the improvement in performance, the

F10-Score was calculated, which considers both precision

and recall. The obtained F10-Score was 0.99552. This repre-

sents a significant improvement over the tape machine, with

a 5.32% increase in the F10-Score.

Predicted True Class
ΣΣΣClass Anomaly No Anomaly

Anomaly 77 35 112
No Anomaly 0 888 888

ΣΣΣ 77 923 1000

TABLE II

CONFUSION MATRIX OF THE VAE WITH THE MODIFIED Z-SCORE

METHOD.

In order to illustrate the detection accuracy, a differ-

ence map was generated to visualize the anomalies that were

detected by the modified z-score method but not detected by

the tape machine. Fig. 7 shows the difference maps of the 4

ICs that were missed by the tape machine.

(a) Scratch (b) Bottom Right (c) Top Left (d) Top Middle

Fig. 7. Anomaly Localization in IC Surfaces: Difference Map of The 4
Undetected Anomalies by Tape Machine

VI. CONCLUSIONS

The manufacturing process of integrated circuits (ICs)

is complex and susceptible to errors. Elmos Semiconductor

SE follows a Zero-Defect strategy to ensure that only fully

functional ICs are delivered to customers. A visual inspec-

tion is conducted before packaging and shipping, where a

tape machine captures images and performs an integrated

automated image processing system to check for any defects

that may impair the functionality of the ICs. However, the

machine is not perfect and some defects may go unnoticed.

The aim of this study is to develop an AI-based system for an

automated visual inspection of the ICs using the Variational

Autoencoder (VAE) from unsupervised learning. The VAE

is trained on images captured by the tape machine that

are considered defect-free. Using the VAE, the differences

between the reconstructed images and the actual images are

compared and a score is developed to identify any anomalies.

This score is designed to meet the requirements of the

semiconductor industry and can detect small defects that may

affect the functionality of the ICs. The evaluation of the AI-

based system shows that it can identify anomalies that were

not detected by the tape machine in the initial inspection.

The developed AI-based system can serve as an additional

quality control measure and helps to improve the Zero-Defect

strategy.
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Abstract—Artificial Intelligence / Machine Learning (AI/ML)
is a technique with two well-known applications: image analysis
and text analysis. In this paper, we will describe an application
of AI/ML to a simple 6D acceleration sensor, illustrating the
challenges of technical applications and sketching the path for
using AI/ML in this environment, where the target is to identity
faulty patterns in the data set.

Index Terms—AI, Machine Learning, Sensor data processing,
small scale architectures.

I. INTRODUCTION

The challenge which we are facing is the inherent limited

reliability of technical systems. A ’convenient’ fault which

can occur is a catastrophic failure. Here, the faulty behavior

becomes visible immediately. For increasing the reliability,

it is also necessary to trace variations in the acquired data,

which means to detect a change in the data pattern. This is a

precondition for predicting failures, where the predictions can

be used to optimize the maintenance schedule.

Artificial Intelligence is, among other areas, well known

for image analysis and text mining. Both domains have a

common property: the data which form the learning basis

are well known and available in large quantities. Everybody

knows what an image is, and the de-facto standard for images

is JPG. In addition, the results can be easily verified. For

text mining, the language differs, but the syntax is clear,

whereas the semantics is somehow vague. Nevertheless, tools

like ChatGPT show clearly that AI/ML is a powerful tool.

In the technical domain, the situation is quite different. The

first challenge is the uniformity of data, which is not guaran-

teed in data from technical devices such as sensors. Technical

data can have outliers which are generated by unknown effects

and there can be missing data, with both effects disturbing the

learning/analysis process in the AI/ML, and the amount of

data per time stamp is quite small. A second challenge is the

kind of data which differs from sensor to sensor. There are

fast sensors with a high data rate, e. g. acceleration sensors,

whereas temperature sensors have possibly the same data rate,

but a much smaller change rate. Due to the high variability

and the small user community, the path to a generic AI/ML

development environment is difficult.

In addition, the hardware used for the interpretation of

the data is in a quite different range: on the one end huge

data centers, on the other end small processors with minimal

resources. This difference leads to the necessity to explore

the space of small scale AI/ML. There exist many different

sensors and small scale applications, but all these applications

are very specific. In this paper, we will have a look at different

aspects which need to be taken into account when designing a

technical AI/ML system, focusing on a specific 6D sensor with

the intention to pave the road towards a more global concept.

• Data pre-processing to transform the raw data into a form

suitable for AI/ML algorithms

• Algorithms which are suitable for the analysis of techni-

cal data with the intention of

• Hardware architectures which can be implemented as part

of the sensor system

II. AI/ML DEVELOPMENT

For many common cases in AI/ML development, standard-

ised data sets are available which are shared in the scientific

community. This does not hold for sensor data, because

there is a multitude of manufacturers with a multitude of

different sensors. In addition, the community working on a

specific sensor is quite small. For being able to perform a

detailed study on sensor date, we had to acquire data on our

own account, in spite of a close cooperation with a large

sensor manufacturer. Obviously, all sensors that are being

manufactured, seem to work perfectly until the end of life of

operation. Therefore, we decided to acquire data on our own

account, which also solved the potential problems of using

protected data.

A. Hardware setup and data acquisition

The environment for acquiring the data was deliberately

kept quite simple. We used the Grove 6D accelerometer and

gyroscope which is equipped with a sensor ST LSM6DS3, see

figure 2. This sensor was connected to an Arduino via I2C

which had the task of acquiring the sensor data and sending

them with the timestamp via USB to a laptop as an Excel/CSV

format. There, the data could be displayed and stored, as

shown in figure 1.
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Fig. 1: Concept of the data acquisition path

For getting different types of data, we acquired data in the

following scenarios: motorway, road, and city. The data from

the motorway obviously showed little variations, whereas the

data acquired in the city were much diverse due to the frequent

breaking and accelerating.

Fig. 2: Data acquisition and sensor module

Besides the three values for each acceleration and gyro rate,

the sensor also provided temperature values as Fahrenheit or

Celsius.

B. Data Pre-processing

Pre-processing is essential because technical data are usu-

ally not well formed. Examples are inadequate data, where

data points are missing, bias and human mistake, manual

labelling and annotation of date sets, and finally privacy and

compliance: the majority of potential data providers do not

divulge their data due to national security, personality protec-

tion (medicine...), and because non-perfect data are treated as

company secret.
1) Data Quality: Almost any data set has a variety of

anomalies and underlying issues: Mismatched data types: Data

can have different forms and ranges when getting information

from different sources, mixed data values: different sources use

different feature names making it difficult to combine them,

Data outliers: Outliers are basically values which are out of

the possible physical range in the data set, Missing Values:
A value in a time series is e.g. zero. Because AI algorithms

cannot deal with this, missing values need to be either filled, e.

g. with the average of the neighborhood values or the overall

average value, or the complete entry will be discarded.
2) Data Reduction: Excessive data resulting from charac-

terising phenomena in multiple ways or data unrelated to a

specific ML, AI, or analytic goal are common. This reduces the

amount of data stored while both simplifying and improving

the accuracy of the analysis.

• Attribute selection helps to fit your data into smaller

pools. It basically merges characteristics or tags.

• Dimension Reduction means using less data to support

analysis and other processes that come afterward. Pattern

recognition is used by algorithms such as K-nearest

neighbours to group together similar data and make it

easier to handle.

3) Data conversion: Here, data will be converted into the

format(s) required for analysis and other steps that come after.

Normalisation: To enable more reliable comparisons, nor-

malisation scales your data into a regularised range. For

example, you will need to scale the results within a given

range, such as -1.0 to 1.0 or 0.0 to 1.0.

Feature selection: The process of determining which vari-

ables – features, characteristics, etc. – are most crucial to

your analysis. Using more features will lengthen the training

process and occasionally result in less accurate outcomes.

Data Validation: The data has now been divided into two

sets. A model is trained using the first set of data. The testing

data, which is the second set, is used to assess the final model’s

resilience and correctness. This second phase aids in locating

any issues with the hypothesis that was applied to the data’s

cleansing and feature engineering.

C. Data Analysis

A summary of the acquired sensor data is shown in figure

3. Obviously, the thermometer values (Fahrenheit and Celsius)

values do not change significantly over the measurement

period, which reflects the short acquisition time.

Fig. 3: Sensor data analysis of all coordinates

Fig. 4: Mean value and standard deviation over time

The acceleration (AcceX) and gyroscope (GyroX) values

obviously show many changes throughout the experiment.

Figure 4 shows the sensor data analysis of all coordinates
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with mean value and standard deviation. This information is

essential for the improvement of the data quality.

The numeric values of mean and standard derivation are

shown in figure 5.

Fig. 5: Numeric mean and standard derivation values

Figure 6 shows a list of outliers which were identified more

or less manually. These were removed from the data sets,

because they were obviously wrong. Luckily, the number of

outliers was not so big that they change the overall picture of

the data. At the end of this process, we had now two data sets:

the original acquired values and the values without outliers.

Fig. 6: Outlier values of each coordinates of 6d sensor

These data sets without outliers were used later on in the

hardware analysis.

D. AI/ML algorithms

Sensor Fusion algorithms are used to combine data sets

from accelerometer and gyroscope for better orientation. Mad-

wick filter can be more computationally efficient variant,

while Mahony filter further reduces computational cost. Power

consumption is less for this filter than for Kalman filters.

Kalman filters use the data of the Gyroscope to orient data of

the accelerometer and hence more accuracy and robustness.

Time Series compression These algorithm can preserve the

information which are essential, but also it will reduce the

amount of data. Gyroscope and accelerometer data are usually

collected as time series, where each data point represents a

measurement of angular velocity (in the case of gyroscope) or

acceleration (in the case of accelerometer) at a specific time.

We can apply Piecewise Aggregate Approximation (PAA) [10])

to gyroscope and accelerometer data in a similar manner as

it is applied to time series data in general. First, the time

series are segmented into small intervals, where the mean

value, the median, or another aggregate function is applied

to the data points in this segment. Then the original data

points can be replaced by the representative values from the

aggregate function. By this process, we can effectively reduce

the dimensionality of the accelerometer and gyroscope data

while preserving essential features and trends. This is benefi-

cial for tasks such as activity recognition and motion analysis.

PAA also can help in reducing computational complexity and

memory usage when dealt with large volumes of sensor data

collected over extended periods.

Incorporating PAA into the sensor fusion algorithm can

effectively reduce the computational complexity of processing

time series data from multiple sensors while retaining impor-

tant information for fusion. This in turn will get us to more

efficient and robust fusion system. It will improve decision-

making in various real-world applications such as robotics,

autonomous vehicles, wearable devices, healthcare monitoring,

and industrial automation. Reducing the data sets using the

approaches described above is a significant step towards small

scale AI/ML which is intended to run on the hardware as lined

out in the next section.

III. HARDWARE ARCHITECTURES

In the previous sections of the paper, we have discussed the

aspects of sensor data acquisition, pre-processing and analysis.

For this part, we had ample resources at hand. Bringing AI/ML

to the sensor means that the hardware available for processing

the data is rather limited.

A. State of the art

One approach are Quantum Dot Cellular Automata (QCA)

[5] which are a potential solution for building energy-efficient

and rapid accelerators needed for AI applications like com-

puter vision and robotics. The traditional CMOS technology

has drawbacks [1], such as severe process variation, GHz

frequency limit, increased leakages, reduced control over the

gate, and high power densities. QCA technology employs

electrostatic force and Coulombic repulsion force to propa-

gate signals between electrons and adjacent cells, resulting

in QCA wires, inverters, and majority gates. QCA clocking

uses reversible logic and four phases to conserve energy and

maintain cell logic, enabling information flow in the forward
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direction. The USE clocking scheme is a set of design stan-

dards that ensure simplicity in manufacturing, scalability, and

adaptable routing. The Nand-Nor-Inverter (NNI) universal gate

are introduced which adheres to the USE clocking scheme and

has a smaller footprint to enable NAND and NOR operations.

QCA Designer 2.0.3 was used to develop the QCA design

simulation, and the MAC unit introduces an 8-bit PIPO register

using D flip-flops and presents two designs. In further studies,

also other hardware implementations need to be analysed.

Other approaches to achieve smaller hardware are approxi-

mate computing [4], which meets quite well the requirements

of physicals. Memristors are new hardware components which

can be used in NN implementations for low-energy MAC

calculations [1]. In the approach Processing in the Emerging

Memory (PIEM) [2], a MAC operation is the output current

of the sum of the memristor’s conductance and the reference

voltage. AdderNet [7] is as an alternative which replaces the

original convolution with adder kernel-only additions, result-

ing in lower energy consumption. There are other components

that can be used in neural networks, such as the analog

memristor network and the XNOR logic operation kernel.

The AdderNet kernel uses bit-level operations and analog

circuits, resulting in lower power consumption. The LeNet-5

on Zynq-7020, where all computation and weights are stored

on board, resulted in a significant drop in energy consumption

and logic resource utilization. Vector symbolic architecture

(VSA) [3] is a computational approach inspired by the brain

that can operate on both symbolic and numeric methods.

VSA uses three operations: bundling, binding, and permuting

to perform computations. Other approaches are followed in

medical applications [8] .

B. Methodology

The layer denotes the total number of hidden layers the

neural network will have during training, and each layer

comprises of several neurons. Depending on the type of

network structure required, different numbers of layers and

neurons might be included. The following describes the way

how layers and neurons function.

1) Neuron: Figure 7 shows the working principle of a

neuron and layer structure and how it is connected to the next

layer. Equation 1 illustrates how a neural network operates, and

here w stands for the weight and x for the network’s input. The

weights are stored in weight memory and are initialised via a

ROM. The input value x is multiplied by the corresponding

weight value w. This result is added to the bias. The operation

takes place in a multiplier/accumulator (MAC). The result

is saved in the variable sum. This process is repeated until

all inputs have been multiplied by weight. The activation

function needs to be applied to the final value following the

multiplication of the weight values by the input values and the

added bias value. Without the activation function, the network

would be a collection of linear layers layered on top of one

another, making it impossible for it to learn from the variety

of input data. It is crucial to keep in mind that weights are

shared on the common bus, while numbers are allocated to

distinguish between layers and neurons. For instance, if the

layer contains 50 neurons, it will also have a weight of 50

and bias values associated with it.

y = wx+ b (1)

2) Layer: In fully connected network requires the connec-

tion of every neuron from the previous layer. Data from each

layer is initially kept in the shift register between layers, and

it is transferred to the following layer once every clock cycle,

as shown in graphic 7(b).

Fig. 7: (a) Neuron Architecture, (b) Layer Architecture [6]

C. Implementation of neural networks

To study the hardware requirements for small scale AI/ML,

a well known data set was used. This removed the dependency

of our work from the availability of correct and faulty sensor

data. The MNIST [11] data set, a widely used data set for

machine learning tasks, is composed of 10,000 test images

and 60,000 handwritten images for training, and every digit

from 0 to 9 is saved as a 28 by 28 pixel greyscale image.

Considering all of the sensor inaccuracy, the MNIST data set

is rather clean in comparison to the 6D sensor data; however,

data cleaning is still necessary before it can be utilised for

machine learning tasks.

1) TensorFlow Neural Network Implementation: Figure 8

follows a tensorflow-based implementation of a deep neural

network; the network’s prerequisite libraries are included in

its initial few lines. After that, it downloads the collection of

60,000 handwritten MNIST digit images and separates them

into training sets and test pictures. This separation of the

training and testing sets ensures that the network generalises to

unseen data sets, as it would otherwise overfit to the training

data set. The network itself has six layers, five of which are

hidden layers and made up of 50, 50, 50, 50, and 10 neurons

with sigmoid activation. The last layer consists of 10 neurons

that suggest which neuron is giving the maximum value. The

model is trained on 25 epochs with Adam optimizer and sparse

categorical cross-entropy loss. The final couple of lines of

the script gather the weight and bias values from the second

layer to the last layer — not from the first layer, because the

first layer is initially a fully connected layer of the data set
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— and stores them in a text file. The weight and bias files

are obtained using built-in methods in the tensorflow library,

while it is probable that there are further methods [9] to get

weight and bias values.

Fig. 8: Tensorflow neural network

2) The Zynet [6] Neural Network Implementation: The

tensorflow-based implementation figure 8 of neural networks

and the Zynet implementation figure 9 of deep neural networks

are comparable. Installing a necessary Zynet module is the first

step, followed by defining the layer structure. The network

comprises six layers; the first five hidden layers are made up

of 50, 50, 50, 50, and 10 neurons with sigmoid activation

function, while the final layer is made up of 10 neurons

with hardmax activation. The hardmax activation function

evaluates the output of each neuron and determines which

neuron is providing the highest value. Since tensorflow-based

and Zynet are completely linked networks, every neuron in the

previous layer is entirely connected to the subsequent layer.

For hardware implementation, we needed the weight and bias

values we obtained from the tensorflow implementation, hence

we now use the appropriate .txt file. We provide the file as

input to the generateArray method for weight and bias values

required for the hardware. Every layer, along with the number

of bias values and neuron weights, is saved in a memory

initialization file.

Zynet specifies the number of bits used for the integer part

Fig. 9: Zynet Neural network

of input and weight values using fixed point representation,

inputIntSize, and weightIntSize. WeightIntSize specifies bits

as the integer portion; the other bits are fractional portions.

The depth of the activation function, which corresponds to

the sigmoid size, is implemented as the Look-up table (LUT)

specified depth 10, which is 1024 values, and when depth is 5,

values are 32(e.g 2address-bits). The zynet.model() method cre-

ates a deep neural network object, and model.add() adds a new

layer to the network. The method zynet.makeXilinxProject()

generates Xilinx project with deep neural network (DNN) as

top module. It takes two parameters; first parameter is project

name, second is FPGA board number which you need to

program, and zynet.makeIP() package the DNN in IP-XACT

format. The zynet.makeSystem() makes block design for a

specified IP block, IO peripherals, AXI interface, Zynq pro-

cessor system, and DMA controller. When we execute neural

networks using the given parameter, the hardware footprint is

depicted in figure 11. Following the execution of the Zynet

implementation figure 9, a project with the name ”ai” will

be created in Vivado, the Xilinx synthesis tool. The script

assumes that Vivado is present in the computer environment

variable because it would otherwise produce an error message.

The number of layers in software implementation matching

hardware implementation is another crucial factor. If the count

of each layer varies between the hardware and software

layers, the output will be flawed because it will not have

weight and bias values for that particular layer. The axi-stream

interface facilitates communication between various system

components, such as the zynq processing, peripheral, memory

while the axi-lite interface helps in data set initialization.

After the data set was cleaned, we created hardware designs

using the same procedure section III-C; the hardware design

is shown in the figures 12 and 13.
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Fig. 10: Footprint for MNIST neural network 0

Fig. 11: Footprint for MNIST neural network 3

Table I provides an overview for different implementations

on the Xilinx FPGA Zynq-7000 for different data sets from

the reference as well as our own sensor data. The size of the

data set that is provided is directly correlated with the number

of parameters. The MNIST data set consists of 60,000 training

samples, and the sensor data set only has 1400 data points.The

NN 3, the largest network with a size of 47520 parameters,

consumes power 193 while utilizing 24711 Look-Up Table

(LUT), 12727 Flip-Flops (FF), 77 Block RAM (BRAM), and

1 global clock buffer (BUFG). NN 0 with sensor data has 581

parameters, and consumes power only 35, using 2379 LUT

Fig. 12: Footprint for 6D Sensor neural network 0

Fig. 13: Footprint for 6D Sensor neural network 1

and 1631 FF.

Arch. Data Param. Power Resources

NN 0 MNIST 16020 60 LUT 6111, FF 3275, BRAM
22.50, IO 97, BUFG 1

NN 1 MNIST 24490 79 LUT 7186, FF 3799, BRAM
30, IO 97, BUFG 1

NN 2 MNIST 33460 107 LUT 11938, FF 6079, BRAM
44.5, IO 97, BUFG 1

NN 3 MNIST 47520 193 LUT 24711, FF 12727,
BRAM 77.0, IO 97, BUFG 1

NN 0 Sensor 581 35 LUT 2379, FF 1631, IO 97,
BUFG 1

NN 1 Sensor 4461 106 LUT 10333, FF 6526, IO 97,
BUFG 1

TABLE I: Resources utilization of different dataset

The result of this task shows the path towards an imple-

mentation of small scale AI/ML on an FPGA, a precondiction

for a future implementation on silicon.

IV. SUMMARY AND OUTLOOK

In this paper we described the different preconditions and

tools which are necessary to approach a sensor-based AI/ML.

Nevertheless, the key problem is not yet solved: the availability

of data of correct and faulty sensors, even whilst cooperating

with industry. Thus, a project proposal was submitted to

XECS, where the generation of data is one of the key issues.
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Abstract—We present a method for training an autonomous vehicle to drift along different trajectories. Unlike previous work, we
use only visual input from a front-facing camera. Because it is difficult to train end-to-end policies to achieve such complex behavior
with only image input, we train different parts of our neural network separately. We use supervised learning to train a CNN-based
feature estimator to predict the vehicle state, which is then fed into a fully connected network trained using Reinforcement Learning.
This training method allows for better interpretability and reliable convergence compared to end-to-end approaches that attempt
to optimize over the much larger combined search space. While our final trained controller shows some undesirable oscillations
during drift and overly cautious driving, it generally proves the feasibility of drifting using only visual inputs.
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I. INTRODUCTION

AUTONOMOUS driving remains a challenging area of

robotics and has evolved from a research topic to being

developed and implemented in applications including personal

mobility, logistical systems, and motorsport. Racing especially

has established itself as an interesting research field pushing

autonomous vehicles and their underlying algorithms to their

limits. These unforgiving environments often force engineers

to come up with innovative ideas. This work focuses on one

such scenario, which is autonomous drifting. Whilst this topic

has been examined in some prior works, they often assume

near-perfect state information and accurate, high-frequency

measurements. As this may not always be available, we seek to

answer the question of whether autonomous drifting is possible

given only visual inputs from a vehicle-mounted camera. The

following chapter will elaborate on previous research in this

field and outline this paper’s contributions.

II. RELATED WORK

Previous work in the domain of autonomous drifting often

relies on traditional control paradigms to synthesize robust

controllers [1, 2]. With recent advances in machine learning,

neural networks have emerged as a viable alternative for many,

especially difficult, nonlinear control problems. Reinforcement

Learning (RL) in particular has proven effective for such

complex and difficult-to-model tasks [3]. This is due to its

ability to learn from interactions with an actual system, rather

than relying on an abstract mathematical model of it. Thus, in

the context of vehicle drifting, RL has been used in several

recent publications. Cutler et al. [4] use it to refine an initial

controller derived from a simplified model in order to improve

its real-world performance. They choose this initialization step

because the otherwise prohibitively large search space for

continuous-control RL. More recently, Cai and Mei et al. [5]

used the model-free Soft-Actor-Critic (SAC) RL algorithm to

learn a drifting policy from scratch. Changing vehicles and

track layouts during training even allowed their controller to

* Equal Contribution

Fig. 1: Our proposed network architecture, allowing for inde-

pendent training and interchanging of the two sub-networks.

generalize to unseen circumstances during deployment. Build-

ing on this, Domberg et al. [6] presented a controller capable

of robustly drifting along arbitrary trajectories, validating their

findings on a scale RC car. While these works demonstrate the

power of learning-based methods, they all rely on accurate,

ground-truth measurements about the vehicle’s state and its

surroundings. Jaritz et al. [7] instead investigate the feasibility

of using only visual inputs from a front-facing camera on the

vehicle, and present a learned controller capable of performing

in a rally racing scenario. This suggests that highly dynamic

vehicle states can be estimated using vision alone.

In this work, we aim to show that the task of autonomous

drifting is solvable using only visual inputs. We therefore pro-

pose the use of a state estimation network, which precedes the

regular decision-making policy network, as shown in Figure 1.

This split network design, as opposed to a singular large neural

network, offers several advantages. First, following the princi-

ple of divide-and-conquer, it allows both the state estimation

and policy network to be developed and trained independently,

resulting in faster convergence and easier adaptability. Second,

it allows either part to be exchanged or modified without

changes to the other. This, for example, enables the same state

estimation component to be used in conjunction with different

policy networks, e.g. for regular driving and drifting. Or, the

other way around, enables using the same policy network with

different state estimators, e.g. for different visual settings or

even zero-shot sim-to-real transfer.
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III. NETWORK ARCHITECTURE

The first subcomponent of our architecture is the state

estimation network block. It is responsible for converting a

sequence of three RGB images captured by the vehicle’s

front-facing camera into a low-dimensional state vector. The

second subcomponent is a Fully Connected Neural Network

also referred to as Multi-Layer Perceptron (MLP). It takes in

the current state vector and computes the control inputs, i.e.

steering and throttle, of the vehicle.

It allows for separate training and fine-tuning of the CNN

and MLP while providing insight into the otherwise hidden

output layer of the CNN. This has huge advantages in testing

the effectiveness and accuracy of the feature extractor.

A. State Estimator Network

The state estimator network is a modified version of the

VGG 16 CNN [8]. Since this network was originally designed

for a classification task, we slightly modified its architecture.

The final structure of the CNN is visualized in Figure 2.

The CNN receives three downsampled RGB images from

the front-facing camera, which are stacked into a single 9-

channel 80x60 pixel image. The reason for choosing three con-

secutive frames is so that the network can accurately capture

the motion information contained between them. By providing

multiple frames, changes in position, scale, or rotation of

objects can be mapped to the vehicle’s ego-motion.

In general, the number of layers in the network is reduced

from the original 16 to 8, to account for the reduced input

image size. Also, each sequential layer combination of con-

volutional and pooling layers only uses a single convolutional

layer, as opposed to the original two or three in VGG 16.

However, the total number of these layer-sets however is only

slightly reduced from 5 to 4. The softmax of the last fully

connected layer is replaced by a sigmoid activation to enable

numeric outputs instead of probabilities. The dimensionality of

the four fully connected layers fc5, fc6, fc7, fc8 at the end

of the network is gradually reduced so that the final number

of outputs is eight, which is the number of state variables to

estimate.

Fig. 2: Architecture of the feature extractor network.

B. State Vector

The state vector is used as the only input to the pol-

icy network and thus needs to represent the full vehicle

state, as well as information about the road ahead, as pre-

cisely as possible while maintaining reasonable dimension-

ality. Similar to [6], we define the state vector as F =
[c1, c2, c3, o, θ, ω, vxCar, vyCar]. Its individual variables are

defined as follows.

Curvatures: c1, c2, c3
Given nine evenly spaced waypoints W =

[w1, w2, w3, w4, w5, w6, w7, w8, w9], each 2.5 meters from

the previous starting from the vehicle’s current position

meandering along the desired trajectory, we calculate the three

curvatures c1, c2, c3. Splitting W into W1 = [w1, w2, w3],
W2 = [w4, w5, w6], and W3 = [w7, w8, w9], we calculate

three distinct curvatures at different distances along the road

ahead of the car.

Offset from road center: o
The value of o is calculated as the distance between the

position of the vehicle and the nearest point u on the track.

Rotation relative to path tangent: θ
The angle θ is calculated between the vehicle’s forward

orientation and the tangent of the path at its current position

u on the track.

Velocities: vx, vy , ω
The translational velocities vx and vy transformed to be

in the vehicle’s local coordinate system, i.e. ego-centric.

Similarly, ω is the vehicle’s yaw rate around its z axis.

For better convergence and stability in training, we nor-

malize each state value by its theoretical (or, in the case of

velocities, empirically determined) maximum value. The setup

and kinematic model used to calculate the desired values can

be examined in Figure 4.

C. Policy Network

The decision making MLP part of our overall network

architecture directly takes in the (estimated) state vector F ,

as output by the state estimation network. Internally, it is

comprised of three hidden layers with 256 nodes each. At the

end, the final layer outputs a throttle and steering command.

This structure is visualized in Figure 3.

Fig. 3: Visualization of the policy network.
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IV. REWARD FUNCTION

In the following, we describe our reward function. For mod-

ularity and easier reproducibility, we introduce its different

parts one by one, building upon each other.

A. Regular Driving

This part of the reward function is responsible for regular

driving, i.e. following the desired trajectory as quickly as

possible. It is purely based on the speed of the vehicle and

its distance from the center of the path. It is defined as:

fdrive(o, vx, vy) = foffset(o) fvel(vx, vy) (1)

where

foffset(o) : Reward based on the distance of the vehicle

from the path centre.

fvel(vx, vy) : Reward based on the vehicle’s speed in the

direction of the path.

1) Center Distance Component: The center distance com-

ponent is included in the reward function to help the agent

learn that driving off the road is not a desired behavior. This

guidance is theoretically achieved by penalizing a distance |o|
> omax with a fixed reward of fdist(o) = 0. However, since

RL algorithms favor continuous, i.e. differentiable, reward

functions, the reward for |o| < omax is implemented as the

following exponentially decaying function:

foffset(o) = 1−
(

|o|
wtrack

2

)4

(2)

The rapid decrease of the overall reward at the outer bound-

aries enables the agent to learn to avoid these critical regions

before actually driving off the track. This behavior can be

altered to occur earlier or later by changing the exponent.

Fig. 4: Kinematic visualization of a car in a curve, currently

in a drifting state.

2) Velocity Component: Apart from staying on the road,

a key concern of the agent should be to move around the

racetrack as fast as possible. This could be achieved simply

by rewarding higher vehicle velocities. However, to avoid

suboptimal behaviors such as driving in circles, we instead

use the vehicle’s velocity along the current path tangent:

�T =

[
tx
ty

]
,

θT = arctan 2(ty, tx),

�VT =

[
cos(−θT ) − sin(−θT )
sin(−θT ) cos(−θT )

]
×
[
vx
vy

]
=

[
vxT
vyT

]
,

fspeed(vxT , vyT ) =
|vxT |
vxTmax

. (3)

where

�VT : Car’s velocity relative to tangent T,

θT : Angle of tangent T with global x-axis,

vxT : Velocity component along tangent T,

vyT : Velocity component perpendicular to T

vxTmax
: Empirically determined maximum speed of the car.

B. Drifting

To additionally encourage drifting behavior, we add another

component to equation (1) and introduce the weighting factor

λ ∈ [0, 1]. The overall reward function becomes:

fdrift(o, vx, vy, β) = λ fdrive(o, vx, vy)

+ (1− λ) fslip(β) .
(4)

The drift reward uses the slip angle β as the main measure-

ment for drifting. It represents the angle between the vehicle’s

forward vector and its current velocity vector. Since during

regular driving, slip angles of up to 25° may occur due to

steering, and slip angles over 90° are considered undesirable,

we utilize the following bell-curve shaped reward function

from [6]:

fslip(β) =

(
1 +

∣∣∣∣β − c

a

∣∣∣∣2b
)−1

. (5)

where

β = arctan

(
vy
vx

)
,

a, b, c : Parameters for altering the bell-curve shape.

Akin to [6], we choose a = 20, b = 2.5 and c = 45. In

this configuration, slip angles around 45° are rewarded most,

while there is a steep decline in reward towards 25° and 90°

respectively.
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V. EXPERIMENTAL SETUP

In the following, we introduce the simulation environment

and detail the training process of both the state estimator and

policy network.

A. Simulation Environment

Analogous to [6], we use a gym environment exported from

the Unity Game Engine’s ML-Agents toolkit. For accurately

modeling the vehicle dynamics within the simulation, the

vehicle-physics-pro plugin is used.

B. State Estimator Network

We first use Supervised Learning to train the state estimator

network to predict the state F given a sequence of three

images. For this, we manually drive the vehicle in the simula-

tion to collect image sequence and state F pairs. Apart from

utilizing different driving styles to ensure a wide coverage

of the state space, we also employ randomization of the

environment. Upon an environment reset, the car is initialized

with a random offset from the road center oinit, a random

rotation relative to the path tangent θinit, a random angular

velocity ωinit, and a random velocity vx and vy . To have as

much variance in the road curvature as possible, the vehicle is

additionally placed at a random position on one of the three

Formula 1 courses used during training. These are designed to

contain sections with a wide range of curvatures ranging from

straight sections to sharp hairpin turns. To increase robustness

and generalization beyond the training data, we also utilize the

following domain randomizations. These include altering the

z-height of the camera, which is randomly shifted up or down

by a value within [−0.1, 0.1]. Also, visual alterations such

as changing the brightness of the camera image and rotating

the main light source (sun) are used. The resulting dataset

of 225000 image sequences to state F pairs is split into a

training set with 180000 datapoints and two additional sets

for validation and testing with 22500 each. We implement the

network in PyTorch and train it until convergence.

C. Policy Network

During training, the policy network is given the ground-

truth state F , which allows it to be trained independently of

the state estimator. We thereby employ the same environment

randomizations as described above, e.g. placing the vehicle

at random locations around the track. The network is also

implemented in PyTorch and trained using stable-baselines3’s

implementation of Proximal Policy Optimization (PPO). Note

that Action and Value networks share the same architecture.

We train the network for maximum of 3.5 million steps, or

until convergence.

VI. RESULTS

To gain insight into the state estimator network perfor-

mance, we first evaluate its standalone performance before

validating it in combination with the policy network.

A. State Estimator Network

Table I shows the overall Mean-Squared-Error (MSE) for

estimating the state vector F given only a stack of three

images, as well as the individual MSEs for each state variable,

which allows some interesting insights. Firstly, they show

that for the curvatures c1, c2, c3, which roughly describe the

curvature of the road ahead in near, medium and far distance,

estimates get worse with distance. It can also be seen that

variables that require temporal information, such as velocities,

generally have a higher error. This is especially true for the

translational velocities vx and vy , which we hypothesize to

be due to a lack of difference between consecutive images on

straight road sections. With an overall MSE of 0.067, however,

the state estimator reaches adequate accuracy.

MSE
c1 0.028
c2 0.030
c3 0.040
o 0.031
θ 0.045
ω 0.056
vx 0.172
vy 0.139

Overall 0.067

TABLE I: Mean-Squared-Error (MSE) of the state estimator

network on its validation dataset.

B. Regular Driving Policy

To assess the interaction of state estimator and policy

network components, we let the combined network drive a

lap on the Nürburgring track. The results can be seen in

Figure 5. Note that in this case, the policy network was trained

only for regular driving. Looking at Figure 5(b), it can be

seen that despite a certain noise level, the state predictions

generally follow the ground truth. While the vehicle remains

rather careful, e.g. utilizing only around 30% of its maximum

velocity, it does manage to complete almost an entire lap

before the episode ends at 170 seconds.

C. Drifting Policy

To judge the drifting performance using only visual ob-

servations, we evaluate the combined network on a circular

trajectory. Figure 6 shows the results. While the state estimator

performs well, the resulting behavior does not depict a clean

drift. The vehicle does only roughly manage to follow the

desired trajectory. Rather than maintaining a smooth drifting

motion, it rapidly enters and exits a drifting state. These

oscillations are particularly noticeable from in 6(b).
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(a) Vehicle path and reference.

(b) State estimate and ground-truth.

Fig. 5: Regular driving policy network on the Nürburgring

track, including state estimator predictions.

Finally, we examine the combined network’s behavior on a

track section from the Formula Drift, which contains curves

of various radii. The results, provided in 7, look similar to

those on the circular trajectory in Figure 6(b). Looking at 7(b),

again the state estimation is accurate and the vehicle manages

to move along the desired trajectory, but rather than smoothly

drifting it oscillates heavily.

VII. CONCLUSION

Our experiments show that using Reinforcement Learning to

train a drifting controller using only visual input is generally

possible, however not as straightforward as feeding in state

measurements directly, as done by [6]. We successfully split

the network into a feature estimator and a policy network. This

allows for independent training and evaluation, which in turn

leads to better interpretability and (faster) training convergence

compared to single-network approaches.

(a) Vehicle path and reference.

(b) State estimate and ground-truth.

Fig. 6: Drifting policy network on a circular track, along with

the state estimator’s predictions.

While our feature estimator subnetwork achieves good

overall accuracy, its error for velocities is especially high.

We suspect this to be because of the lack of distinct visual

features in the environment to infer speed from. Using a

photorealistic simulation, particularly with a more irregular

road texture, will likely overcome this. Our decision-making

policy network also performs well, however, some issues, such

as oscillating drifts and overly careful driving, remain. In

future work, these shortcomings could be addressed by jointly

continuing the training after individually (pre-)training feature

extractor and policy network and combining them into one.

This joint post-combination finetuning may also be done in

a different simulation or even the real world, where training

from scratch is not feasible. Pre-training the policy network

in simulation, while the feature extractor is initialized with

human-collected datapoints from the real target vehicle, may

allow for zero-shot sim-to-real transfer.
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(a) Vehicle path and reference.

(b) State estimate and ground-truth.

Fig. 7: Drifting policy on a section of a Formula Drift track

and the state estimator’s predictions.
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Abstract  
Autonomous shuttles are rapidly emerging as key technology to optimize urban vehicle traffic. Several cities worldwide 
are currently investigating this system of transport; however, there are still several open issues. This paper reviews the 
main critical challenges faced by municipalities in integrating autonomous shuttles into their infrastructure. It discusses 
routes, charging stations, communication nets, public perception and legal frameworks. In particular a proposal for the 
German regulations will be discussed.  
 
 
1 Introduction  
Nowadays, there is a constant request to find innovative 
methodologies aimed at improving the road transportation.  
Public transportation has the goal to bring down the overall 
traffic load by reducing the number of traffic jams gener-
ated by cars as well as by decreasing CO2 emission levels.  
Public transportation at the same time faces challenges re-
lated to strict timetable difficult to adhere, overcrowded 
buses as well as lack of finding personnel. Autonomous 
shuttles or buses have reached level 4 of autonomy, where 
the driver can take hands off during a defined use case (see 
standard SAE J3016 [31]) and  are rapidly emerging as key 
solutions to optimize urban vehicle traffic. They present a 
number of sensors and functionalities to extract the infor-
mation from the environment in order to detect other traffic 
participants like vehicles, pedestrians, and bicycles, to 
avoid collision and to select a proper path for the driving 
destination. These autonomous vehicles promise to en-
hance mobility, reduce congestion [1], increase traffic 
safety [2], enhance travel speed and contribute to a more 
sustainable urban environment [3].  
There are several cities worldwide that are testing autono-
mous shuttle services. For example, in the United States 
San Francisco [4] has started autonomous shuttle service 
on a fixed route, which connects residential neighborhoods 
with stores and community centers. In the recent past years 
in Europe more and more cities like Paris [5], Rome, and 
Turin [6] have delivered first autonomous shuttles services 
on a selected route of the city. In Germany several pilot 
projects with automated shuttles have already been carried 
out. According to the Association of German Transport 
Companies (Verband Deutscher Verkehrsunternehemen - 
VDV) over 40 municipalities have pilot projects listed so-
far [7] - see overview in Table 1. The municipalities plan 
to make consistent investments in order to integrate this 
new type of vehicles with the existing public transporta-
tion. For example, the city of Hamburg is planning to de-
ploy above 10,000 autonomous shuttles by the 2030 [8]. 
However due to the radical change that the autonomous 

shuttles introduce to the system of transportation and infra-
structures, the municipalities face several challenges. For 
example, municipalities can decide to designate a certain 
route to the autonomous shuttles or modify existing ones. 
This has a strong impact to the traffic management system, 
because such a decision requests to make investments to 
create new lanes, as well as traffic signs and traffic lights. 
Moreover, such autonomous vehicles typically run on elec-
tric power, therefore municipalities need to install charging 
infrastructures along the route. Without considering the re-
quirements imposed by autonomous shuttles, the system of 
transportation would perform worse. 
In this paper we discuss the main challenges cities and mu-
nicipalities face in order to integrate existing infrastructure 
with this new type of transportation. Section 2 will discuss 
the route, section 3 will describe the charging stations and 
communication network, section 4 will debate the people 
acceptance and finally section 5 will tackle the regulatory 
aspects especially related to Germany. 

2 Route 
To navigate through complex traffic autonomously, shut-
tles must acquire and learn from route information. The 
shuttle acquires information from the environment through 
a variety of sensors, including cameras, radars, lidars, 
IMU, GNSS, and ultrasound. Such information is used to 
create a map, where the shuttle is able to localize itself. The 
perception algorithms of the shuttle evaluate if the detected 
objects from the environment are static or dynamic and 
classify if they are obstacles or road users such as pedestri-
ans or vehicles. Based on the distance and the speed of the 
detected objects, an evaluation about the risk of collision 
between the shuttle and the detected objects is performed. 
This information is then used in order to define an optimal 
trajectory for the shuttle to continue the travel without col-
lisions.  
The machine learning algorithms of the autonomous shut-
tle improve their knowledge of the route as well as the ca-
pability to travel every time the shuttle carries out a drive. 
The learning phase depends on the route complexity. The  
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duration of the process might take from a few days to a few 
weeks [9]. 
Autonomous shuttles are currently used in regular opera-
tion especially in closed environments, test-tracks as well  
as first-mile/last-mile transport to connect the passengers 
from and main public transport hub to his final destination 
and the other way around. 
There are several challenges and critical factors for design-
ing the route that need to be considered. A list is provided 
below [9, 10, 11, 12, 13, 14, 15,16]. 
Speed: In several studies the shuttles have been deployed 
on streets, where the allowed traveling speed was much 

higher than the one reached by the shuttle itself. The shut-
tle’s operational speed is in general between 15- 25 km/h.  
To communicate the presence of the shuttle to other traf-
fic participants, some municipalities have installed traffic 
signs that highlight "slow vehicle", a speed limit of 30 
km/h, and displays that show the actual speed along the 
route. 
In project FABULOS in Helsinki a separate lane was cre-
ated and the shuttle could reach up to 40 km/h [10].  
Narrow and curvy streets: The dimensions (width and 
height) of the vehicle and the roadway play an important 
role in order to maintain a safety distance between the ve-
hicle and the other road users. Depending on the shuttle’s 
dimension, the minimum lane width must be derived. 
Vehicles parked on narrow and curvy street can be per-
ceived as an obstacle for the autonomous shuttle. This 
might cause an abrupt braking. In order to overcome such 
an issue, municipalities can install the traffic sign Clearway 
along the road [11]. Moreover, the vehicles driving behind 
the shuttle are also encouraged not to overtake, because the 
shuttle’s abrupt breaking can lead to safety risks [14].  
Vegetation along the road: Branches that are too low 
above the street as well as bushes along the road might be-
come an obstacle for the shuttle. A measure that can be 
taken is to trim the trees, remove the overhangs on plant 
islands and remove the roadside weed. 
Road signs and lane markings: Autonomous shuttles de-
tect the information of road signs and lane marking. In de-
fining a route, it must be made sure that the signs and road 
markings are clearly recognizable by the sensors or cam-
eras on the shuttle buses. If this is not the case, they must 
be adapted accordingly or replaced.  
Interaction with other road users: several projects are 
carried out on open routes, where the autonomous shuttle 
needs to interact with other road users. Typical critical sit-
uations are:  

 Pedestrians at crosswalks, at intersections, and 
walking along the road  

 Cyclists riding along the road  
 Vehicles at intersections in various conditions  

Understanding how autonomous buses interact with other 
vehicles and human-driven vehicles is crucial. Lessons 
learned emphasize the importance of considering human 
behavior in decision-making algorithms of the shuttle.  
Currently the safety operator, a safety trained person by the 
autonomous shuttle provider, who monitors the vehicle 
performance, checks if the intersection is safe and, in such 
a case, he presses a proceed type button [17]. In such a sit-
uation a reduction of the shuttle’s speed could be also rec-
ommended.  

3 Electric stations and communica-
tion network 

3.1 Electric Powered Route  
For several types of shuttles, the power of a battery pack 
ranges from 33 kWh to 110 kWh. Such batteries should 

Table 1: Projects with autonomous shuttles in Germany 

Aachen - Interreg I-AT Gera - EMMA Mannheim –  
ShuttleME 

Aachen - Marktliner Hamburg - HEAT Mannheim –  
RABus 

Aachen - Urban Move Hamburg –  
ReallabHH 

Monheim am 
Rhein – Monheim 
-Shuttle 

Bad Birnbach - Linie 
7015 

Hof - SMO München - 
EasyRide 

Bad Birnbach –  
Autonome Linien und  
Bederfverkehre 

Iserlohn –  
a-BUS Iserlohn 

München –  
TEMPUS 

Bad Essen - HubChain Karlsruhe –  
EVA shuttle 

Neubäu am See - 
AutBus 

Bad Soden –  
Salmünster- EASY 

Keitum (Sylt) – 
NAF-Bus 

Neustadt an der 
Weinstraße – 
Hambach-Shuttle 

Berlin – See-Meile Kelheim –  
KELRIDE 

Oberhausen – 
Centro-Shuttle 

Berlin – Stimulate Kelheim - SUE Osnabrück –  
HubChain 

Berlin – Pole Position Kronach - SMO Regensburg –  
Emilia 

Berlin – Shuttles & Co Lahr – Lahr Shuttle Rehau - SMO 

Berlin – First Mover Lauernburg an der 
Elbe - TaBuLa 

Soest – Ride4all 

Darmstadt Lincoln - 
Shuttle 

Lauernburg an der 
Elbe – TaBuLa LOG 

Stolberg -   
AS-NaSA 

Drolshagen -SAM Leipzig-ABSOLUT Stuttgart –  
DiaMANT 

Düsseldorf - KoMoD Lennestadt 
Altenhundem- SAM 

Stuttgart – U-Shift 
MAD 

Eltville am Rhein - 
EASY 

Ludwigsburg –  
DiaMANT 

Überherrn - Ter-
minal 

Enge – Sande - Emil Lunden – NAF-Bus Waiblingen –  
AMAISE 

Frankfurt am Main - 
EASY 

Magdeburg –  
AS-UrbanÖPNV 

Wiesbaden – 
DIGI-S 

Frankfurt am Main - 
CUBe 

Mainz – EMMA 
Shuttle 

Wiesbaden – 
EASY 

Friedrichshafen –  
RABus 

Mainz – EMMA2 
2.0 

Wusterhausen – 
AutoNV_OPR 

Gemeinde Rackwitz - 
FLASH 

Mannheim - Rob-
Shuttle 
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ensure operating time above 10 hours [20, 21, 22]. See ex-
amples on Table 2 
  

Table 2: Battery capacity of autonomous shuttles 

Model Battery Capacity 

Holon Mover 110 kWh 

EasyMile EZ10 38.4 kWh 

Navya 33 kWh 

 
However, the operating time of the shuttle is influenced by 
the topological conditions of the route. The length, the 
steepness of the route as well as the usage of heating and 
air conditioning have an impact on the shuttle’s energy 
consumption. In a project on Lennestadt it was communi-
cated that the shuttle was not able to properly cope with the 
steepness of the route and in the end, it was decided to 
choose a different route [19]. 
Since several buses run on electric power, there is the ne-
cessity to plan and install dedicated charging stations along 
the route. In general, the charging stations are defined ac-
cording to the following standards: The SAEJ772 [23, 26] 
defines the charging levels used to classify the power, volt-
age and rated current of the charging station. The IEC 
61851-1 [24, 26] defines the charging modes used to clas-
sify power supply, protection and communication control 
of the charging station. The IEC 62196-2 [25, 26] defines 
the charger types used to classify the different type of sock-
ets used to supply power to the autonomous shuttle.  
Charging time can last several hours. For example, 
EasyMile EZ10 can be charged for 7 hours on average [21]. 
According to best practice, it is suggested to carry out small 
maintenance of the shuttle close to the charging infrastruc-
ture, this because at the same time the shuttle can be 
charged [15].  

3.2 Communication network  
Autonomous shuttles utilize various sensor systems such 
as cameras, radars, lidars, and ultrasonic devices to detect 
environmental objects. At the same time the shuttles might 
need to interact with other devices on the infrastructures, 
such as traffic lights, traffic signs and cameras at the inter-
sections as well as the other road users or other autonomous 
shuttles. This requires the installation of high-speed com-
munication networks to ensure reliable connectivity. A 
typical example of communication between the shuttles is 
for example platooning. A platoon is an autonomous and 
cooperative group of shuttle buses that travel together 
while maintaining a minimum following distance. The first 
shuttle is typically the train conductor and uses shuttle-to-
shuttle (vehicle-to-vehicle) communication technologies to 
determine the distance between shuttles, travel speed and 
train size. 
The development directions pursued for the direct wireless 
information exchange of vehicle-to-everything (V2X) are 
currently the “Direct short-range communications 
(DSRC)” and “Cellular V2X (C-V2X)”.  

The DSRC [27] is an adapted variant of the WLAN stand-
ard IEEE 802.11p, which has been optimized for data ex-
change between vehicles and other road users. It entered in 
the automotive marked already in 2015. The communica-
tion range exceeds 1 km and it works effectively at road 
user speeds up to 500 km/h. In comparison to the C-V2X, 
the DSRC transmits messages with very low data volume, 
whereas the C-V2X has the data volume of 4000GB per 
day. Moreover, the DSRC latency time is only 0.4 ms. On 
the other side the C-V2X [28] is a standard for V2X appli-
cations, which uses the Long-Term Evolution (LTE) tech-
nology present in the cellular devices. Therefore, the usage 
of the already existing infrastructure for cellular devices 
creates an advantage with respect to the DSRC in terms of 
installation and maintenance. Moreover, since the 5G net-
works are also becoming more established, such a technol-
ogy allows a data exchange with a small latency time (1 
ms) and high data rate (up to 10 Gbit/s).  
The vast amount of data generated by the communication 
system poses a challenge to the municipalities, which need 
to establish data management and storage facilities in order 
to analyze the data and safely store it. 
Finally, DSRC and C-V2X devices cannot currently com-
municate with each other, therefore this might be a chal-
lenge that needs to be considered in planning the proper 
infrastructure [29].  

4 Public Awareness  
Even if there is more and more information about the new 
advances on the autonomous driving vehicles, the public 
still perceives this new technology with skepticisms. Mu-
nicipalities therefore face the challenge to introduce cam-
paign to educate the population by highlighting the benefits 
of such technology and assuring about the safety aspects.  
Several projects [12, 13, 15] have indeed shown that feel-
ings of unease or skepticism disappear during the trip. 
The overall test was described as pleasant, exiting and the 
autonomous shuttle technology was perceived as useful.  
Concerning the safety, the test participants expressed pos-
itive feeling in general. However, in the Ride4all project, 
where the shuttles were tested with people with disabilities, 
the passengers associated the positive feeling with the pres-
ence of the safety operator and that the seat belts were re-
quired. Lack of source of information from the driver might 
be an issue, if a passenger needs to travel alone. Moreover, 
the shuttles stop several times detecting bags and branches 
as obstacles and generating sudden stops. Besides the im-
provement of the obstacle detection algorithms, it is rec-
ommended to provide a smother stopping motion, which 
would increase the perceived safety. 
Another challenge that the shuttles are still facing is the 
speed. As previously stated, the shuttles move at a slow 
pace. The test passengers suggested working to increase 
the average speed while maintaining a sufficient level of 
safety. This would improve the service quality. 
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5 Regulatory aspects 
Several municipalities have already adopted autonomous 
shuttles transportation, however defining regulations for 
this new type of transportation is still challenging due to 
the liability in case of accidents and involvement of insur-
ance.  
In the United States the legislation on the autonomous shut-
tles and autonomous vehicles differs from one state to the 
other. Several states require to have a safety operator on 
board during the drive, while other states allow drives with-
out the safety operator. On the other hand, in China the 
government authorities have provided regulations that per-
mit the testing of autonomous shuttles since 2017. The first 
autonomous shuttle Baidu was tested in Beijing in 2018. 
In Europe, regulations vary by country and there is no clear 
standard. In Germany, the VDV has proposed a legal 
framework for fully automated and driverless Level 4 op-
eration in public transport. See suggestions below. 
Stepwise operating license: According to the framework 
the autonomous shuttles are allowed to drive, if an author-
ization for a general operating license is released by the 
federal government, as well as an approval by the federal 
state (Land), where the driving route has been defined. 
Tests on the field have shown that the approval on the au-
tonomous vehicles depend on the environmental condi-
tions. Therefore, it has been decided to use a stepwise ap-
proval approach, comparable to the approval of special ve-
hicles, such as fire tracks or mobile cranes: vehicle ap-
proval and vehicle approval for the environment. The fed-
eral government is responsible for issuing the operating li-
cense, while the federal states decide where and under 
which circumstances the autonomous shuttles can be oper-
ated.  
Prerequisites for driverless operation: Currently the au-
tonomous shuttle can be operated, if a safety operator is 
present. In order to allow driverless operation, the VDV 
suggests to create the prerequisites to allow driverless op-
eration. For instance, the shuttle shall be able to be deac-
tivated at any time also externally if a risk is faced.  
Special status for test vehicles: It suggested to enable re-
mote control/teleoperation for test vehicles that currently 
do not comply with all the requirements 
Operational-Technical-Supervisor: The loss of the 
driver needs to be compensated by a new legal figure, 
which has operational technical supervision according to 
VDV. This figure monitors and approves vehicle-related 
maneuvers and determines the deactivation of the vehicle. 
The operational and technical supervision is suggested to 
be allowed to be carried out from “outside” – for example 
via an external control center or in the local area/on site.  
Finally, it is suggested that operational and technical super-
vision is not performed for only one vehicle, it would be 
too expensive, but rather for the vehicles in the operational 
area. 

6 Conclusions   
Autonomous shuttles are being tested in various cities 
worldwide to integrate them with other transportation sys-
tems. Currently there are several challenges for the infra-
structure to be resolved, such as the geometry of the route 
and its infrastructure, the slow speed of the shuttle as well 
as the fact that there is still the need for the presence of 
human operator also inside the vehicle. However, the tests 
show a positive feedback from the passengers and this cre-
ates the right environment to continue the development and 
overcome the challenges.  
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Abstract

Several industries, especially the automotive industry, are moving towards higher and higher portions of electronics in

their products. And they become increasingly complex and hard to analyze. This presents a challenging burden when it

comes to the required proof of functional safety manufacturers have to provide for their products. Not only random faults,

but also component tolerances can lead to unexpected safety hazards. Today’s methods struggle to keep up with these

challenges. This paper identifies some key challenges with today’s methods and presents a new one, that uses computer

automation and a model-based approach to improve this process. It is outlined how the new method does the same things

better while also adding new capabilities.

Introduction

In this paper we want to look at methods to produce proof

of functional safety of electronic systems. First we identify

challenges with established methods, that are being used

today. We will then present our new approach, that is heav-

ily computer-aided and comes with new ways to perform

both wider and deeper analyses on these systems. A new

workflow using this approach will be explained after that.

An example for demonstrational purpose is given in this

paper as well. Our conclusion summarizes our findings

and results and provides our thoughts on possible future

developments.

1 Challenges of today’s methods

Functional safety analysis poses significant challenges to

engineers, who are facing increasing difficulties in dealing

with ever more complex systems. Some of these difficul-

ties are linked to deficiencies of the traditional methods,

that are being used today.

1.1 Scope
High degrees of dynamic coupling between subsystems

of different domains mean that functional safety analysis

comes with increasingly broader scope in need of consider-

ation. These functional interactions necessitate collabora-

tive effort. The need for involvement from more engineers

increases overall work load for this task.

1.2 Manual work
Classical methods of safety analysis, such as failure

modes, effects, and diagnostic analysis (FMEDA) and fault

tree analysis (FTA), rely heavily on manual work from (of-

ten dedicated) safety engineers. They consist in large parts

of hypothetical reasoning and communication. Assistance

from computers often only comes in form of spreadsheets

to hold the results of such labor. Model-based approaches

to development exist ([1, 2, 3, 4]), but are rarely used ex-

tensively for safety analysis due to a lack of sophisticated

methods of automation. These deficiencies lead to higher

demands in work hours and inconsistencies.

1.3 Problem complexity and effort
An obvious challenge is to maintain the ability to han-

dle increasing problem sizes. Especially the problem of

combinatorial explosion in dual-point fault (DPF) analysis

(quadratic in this case1) quickly becomes insurmountable

without measures to reduce complexity.

1.4 Prediction quality
Humans make mistakes. Even experienced experts are

problematic as accurate predictors for system responses to

fault events. Humans lack the consistent concentration to

maintain a high level of accuracy. Another issue with hu-

man prediction is the reliance on intuition to solve complex

problems. At some point guessing becomes inevitable.

Summary: Goals to achieve
We derive the following goals from the aforementioned

challenges:

• Reduce human effort

• Ensure completeness

• Increase prediction quality

• Create a consistent tool-chain

We aim to achieve these goals with our computer-aided ap-

proach to functional safety analysis.

1N = NSPF +NDPF = n ·M+
(n

2

)
·M2 = n ·M+ 1

2 ·n(n−1) ·M2
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2 Computer-Aided Functional
Safety Analysis

The general idea of computer-aided functional safety anal-

ysis is to reduce the required manual work as much as pos-

sible. Several ideas are presented in this paper that aim to

shift the responsibilities of safety engineers towards mod-

eling, decision and declaration work. Every task, that can

be automated, benefits from the precision and reliability of

computer algorithms.

2.1 Model-driven
A key aspect of enabling computer-aided functional safety

is the adoption of model-based design. Only then can a

computer program be tasked to work on any system. These

models are the basis of communication between the engi-

neers and any automation algorithms. The domain of mod-

eling can vary. We have gathered experience with mod-

eling in MATLAB/Simulink2 and SPICE3, for which our

approach has worked very well.

2.2 Library-driven
To accelerate the process of defining failure modes for each

component in a given system, we chose to create a library

system in which failure modes can be organized in com-

ponent types. These libraries can grow over time and be

reused with multiple systems. Applying these libraries to

a new system is as simple as assigning each component in

the model one of the defined component types. To further

reduce the effort of this necessary assignment, we allow the

definition of type specifications to help find components of

each type. We find that most components can be assigned

automatically using this approach.

2.3 Automated simulation
The main work of automation comes from the simulation

of all fault scenarios, that can be generated from the decla-

ration of components and failure modes. The preparation

of the model, the simulation (using various simulators) it-

self and the gathering of results in a standardized format

can be fully automated. This task in particular is also well

suited for massive parallelization, offering great opportu-

nities for time savings, given appropriate resources are al-

located to compute equipment.

2.4 Fault injection and tolerance analysis
Our approach to safety analysis includes failure modes and

tolerance effects analysis. We are able to inject failure

modes through component parameter manipulation or sub-

stitution with a new failure model in-place.

We have implemented delayed failure injection (including

temporal permutation of DPFs). This is especially impor-

tant for DPF analysis. It needs to be emphasized, that a

DPF event is not the occurrence of two faults at the same

time. A single-point fault (SPF) scenario turns into a DPF

2MATLAB/Simulink is a product of The MathWorks
3ngspice in particular

scenario by the advent of a second fault while the first fault

is already present.

Tolerance effects can be applied to either component pa-

rameters or to a components’ output signal amplitude

(black box approach). Values are drawn from standard or

custom distribution functions. The combination of failure

modes effect and tolerance analysis is implemented on the

technical side of things, but research on evaluation of this

data has not yet concluded.

2.5 Analysis algorithms
We aim to automate the process of evaluating simulation

results in terms of safety. Our proposed method is to use

user-defined mathematical and logical test expressions to

categorize all scenarios as either safe, critical or diag-
nosed. The test expressions used for this are divided into

criticality and diagnosis criteria, which together form the

safety criteria of a system. The decision process of this cat-

egorization is displayed in Figure 1. Based on these eval-

uations, latent faults (LFs) can be identified automatically.

The calculation of safety metrics also becomes possible.

yes noCriticality 
criteria 
met?

yes noDiagnosis
criteria 
met?

safediagnosedcritical

Simulation 
Result

Figure 1 Decision tree for determining a scenarios’

safety class using safety criteria

3 Workflow using new methods

There are several improvements to the workflow during de-

velopment when using our new approach.

3.1 V-model development
In accordance with the industry standard ISO 26262[5] for

functional safety in the automotive industry we seek to en-

able the development process according to the V-model.

That is to begin with requirements and abstract, behavioral

modeling. Our goal is to allow for functional safety analy-

sis even with preliminary models, that don’t include actual

implementation details on a component level. These mod-

els are still very valuable to analyze using assumed black

box failure behavior. We enable to work with such failure
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modes and provide preliminary results based on that. This

approach allows for the detection of structural design flaws

early on in the development process. For the later stages of

development we also implemented methods to validate ac-

tual hardware prototypes using hardware-in-the-loop (HiL)

simulators. This proved especially useful for software val-

idation.

3.2 Complexity reduction through hierar-
chical modeling

Our approach to tackling the combinatorial explosion

problem is reduce the number of simulations needed to

cover all possible fault combinations. The key observation

to exploit here is the fact, that complex systems can be bro-

ken down into smaller subsystems, that interface with each

other. And that many faults result in a similar symptom at

the module boundaries. It is therefor redundant to consider

such faults individually while analyzing the effect of these

faults on the overall system.

The simplest example to show this is a resistive divider

network, consisting of two resistors of the same value.

We consider the four standard failure modes of a resistor:

open-circuit, short-circuit, resistance drift to 50 % of the

original value and 200 %. Applying each failure mode to

both resistors yields eight SPFs. Simulating these faults,

sweeping the input voltage and observing the output volt-

age, shows far less distinct output curves than the eight

actual curves there are. It is possible to describe the failure

behavior of this subsystem under all component failures

with just four failure symptoms. System simulation on the

next higher level can work with these symptoms as new

subsystem failure modes.

3.3 Iterative process
During the development process, the design is going to

change many times. As is intended and provoked by the

safety analysis results of early stage models. Because of

this safety analysis becomes an iterative process, where

found flaws can be mitigated as soon as they are discovered

with reduced effort of redesigning because it is far more

likely with this method, that obscure issues can be identi-

fied earlier than with traditional methods. The hierarchical

modeling method allows for subsystem implementations to

be added or changed over time with only the higher system

level needing to be re-simulated, but not any other subsys-

tem. This reduces the impact of changes made and makes

the development process more agile.

4 Example of combined analysis

The following voltage monitoring circuit is an interesting

example, as it passes both component tolerance, as well as

fault injection tests. Our approach of combining the two

proves, that these analyses individually leave enough room

for critical scenarios to remain undetected under normal

circumstances.

4.1 Example circuit

Figure 2 Example: voltage monitoring circuit

The circuit, as shown in Figure 2, monitors a sensor sig-

nal and produces an alarm signal whenever the sensor sig-

nal goes outside of an amplitude window of 1 V to 4 V.

To achieve SPF functional safety the system is already de-

signed in a redundant way: It consists of one static win-

dow comparator using comparators and reference voltages

and a dynamic circuit, that creates a triangle signal using

an operational amplifier integrator circuit and square wave

signal generated in the microcontroller to compare against

the sensor signal. This comparison produces a pulse width

modulation (PWM) signal at the output of the comparator,

which the microcontroller reads in as a digital signal. The

duty-cycle of this signal correlates linearly with the signal

amplitude. The microcontroller processes the logical out-

put from the window comparator and measures the duty

cycle of the PWM signal to deduce whether the sensor sig-

nal lies within the accepted amplitude window. It then uses

a logical OR operation to combine both values into the ac-

tual alarm signal the circuit sends out.

4.2 Simulation setup and safety criteria
The simulation is done with a ramp signal to sweep all

possible sensor signal amplitudes. This is important to ver-

ify the safety conditions under all possbile circumstances.

The circuit behaves quasi-static if the ramp signal is slow

enough compared to the frequency used for the dynamic

branch of the circuit.

The circuit is considered safe if the alarm signal activates

for all input voltages outside the defined as safe amplitude

window, with safety gaps applied. The expected output sig-

nal for this circuit is shown in Figure 3. Critical operating

areas are annotated. The following analyses use this input

signal and safety condition.

4.3 Tolerance analysis
This analysis investigates the influence of component pa-

rameter variations due to tolerances in manufacturing or

operational conditions. We applied a tolerance of ±5 % on
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Figure 3 Alarm signal under normal conditions

Figure 4 Tolerance simulation result

the resistance values and ±10 % on the capacitance values.

The comparators and the operational amplifier get tested

with input offset voltages of ±5 mV.

The results shown in Figure 4 indicate, that the redun-

dant measuring design and selected component accuracy

achieve the goal of satisfying the safety condition under

the ranges of possible component values due to tolerances.

The circuit is considered functionally safe by the tolerance

analysis.

4.4 Fault injection analysis
This analysis investigates the influence of component fail-

ures, which are expected to occur during a products’ life-

time. We injected various standard component failures

like open-circuit, short-circuit and value drifts of 50 % and

200 % for every resistor and capacitor. For the comparators

and operational amplifier we assumed all possible stuck
failures for every input and output.

Like with the tolerance analysis, Figure 5 shows, that all

SPF are covered by the redundant design. The circuit is

considered functionally safe by the single-point fault in-

jection analysis.

4.5 Combined analysis
The combined analysis does fault injection and tolerance

application at the same time. For every SPF injected, a

number of runs with different tolerance values for all other

components is generated and simulated. Figure 6 shows

how the system is able to become critical under the influ-

ence of some SPFs, when other components’ tolerances are

considered as well. This is because the measure of redun-

dancy can fail when one path is out of order because the

SPF, that happens in it, while the other path goes out of

the safe operating area due to the tolerances on its’ com-

Figure 5 Fault injection simulation result

Figure 6 Combined simulation result

ponents. This shows how even a system with perfect diag-

nostic coverage for SPFs to rule out any DPF critical condi-

tions can become critical under the influence of tolerances.

Only a combined analysis approach is able to check for

such cases.

5 Conclusion and future

In this work, we looked at the challenges of today’s meth-

ods of functional safety proof and derived goals for a better

approach to this problem. We presented such an approach,

that heavily relies on computer aid through modeling and

a high degree of automation in the process. The effective-

ness of this new approach has been demonstrated with a

real-world example.

5.1 Goals achievable
The goals for a modern method for proving the functional

safety of electronic systems have been shown to be achiev-

able. The task of predicting the what-if s can be reduced to

modeling work and declaring components and (reusable)

failure modes. Database keeping enables users to ensure

completeness of their analysis. By the shift in focus for

developers from thinking through the behavior of a system

case-by-case to just providing detailed enough models, the

achievable prediction quality is increased by leveraging the

speed and reliability of machines, computer simulation in

this case. The consistency of the results of the carried out

analysis can be managed by a program.

5.2 Benefits of our computer-aided methods
It has been shown how computer-aided methods enable de-

velopers to handle very complex systems by reduction in

complexity and effort. A modular modeling approach al-

lows for safety analysis to begin in an early stage of de-
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velopment through the use of abstract black-box models,

that can be switched out for concrete implementations later

on. A digital workflow and consistent tool-chain allows for

efficient use of resources, such as re-usable failure mode

libraries and system modules. Relying on computer simu-

lation gives rise to the scaling possibilities of hardware re-

sources over human resources. The data obtained is avail-

able for powerful analysis algorithms, that can give valu-

able insights and find the needle in the haystack.

5.3 Future possibilities
There are many ways in which modeling capabilities can

be improved to create more accurate prediction results.

Such capabilities could include thermal modeling to con-

duct safe-operating-area (SOA) analysis, so called smoke
analysis, during fault simulations. Results of which can be

used to implement what we call a fault sequence analysis,

where the incurring damage from operation outside of the

SOA is considered by the model and correctly predicts the

probable chain reaction of faults.

Another opportunity is fault modeling, which can be en-

hanced with stochastic variations. This takes on the idea

of combining fault analysis with tolerance analysis and ap-

plies it to the failure models as well.

We also plan on using the results from tolerance analysis to

highlight sensitivity hot spots in the design. Such insights

could be valuable for optimizing component selection and

therefor cost reduction in the final stages of development.
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CSAM anomaly detection with AI 
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Abstract  
This paper presents an industrial application of unsupervised autoencoders for the task of anomaly detection within CSAM 
(C-type Scanning Acoustic Microscopy) images to detect potential defects in the semiconductor manufacturing process 
as part of the work done within the ECSEL project iRel4.0. 
 
The approach presented leverages the high-yield nature of the semiconductor industry to generate a functional unsuper-
vised autoencoder model with significantly shorter training time than supervised approaches to achieve comparable re-
sults. This approach has been validated with both synthetic wafers with manufactured defects as well as real production 
wafers. The approach extends current CSAM inspection methods by adding die-level resolution to potential defects as 
well as surpasses current manual optical inspection methods contributing to achieving Zero-Defect strategy in semicon-
ductor manufacturing. 
 
1 Introduction 
As part of the ECSEL iRel4.0 project, this work presents 
an AI application toward improving reliability as part of 
the objectives within the project [1]. The work presented 
demonstrates the capability of using unsupervised autoen-
coders for anomaly detection in a high-yield and high-den-
sity application which can allow for yield recovery as well 
as improved failure detection contributing to Zero-Defect 
strategy.  

1.1 Device and CSAM wafer image 
 
The device utilized for the work is a burrowed cavity pres-
sure sensor that requires a complete seal for functional per-
formance. One of the quality control steps at Elmos include 
an optical inspection of CSAM imaging to detect defects 
on the manufactured wafer as in Figure 1. The type of de-
fects can vary, but the key failures that are being detected 
are voids and scratches on the surface that will interfere 
with seal of the device which lead to reliability issues and 
potentially failure of the device. 
 

Figure 1 CSAM wafer image (left); zoomed in (right)  
 
Typically wafers are rejected upon inspection if large de-
fects are observed. This would then typically result in a 
complete scrap of the wafer. The presented method offers 
an automated approach to detect such defects as well as po-
tentially allow for yield recovery on problematic wafers. 

1.2 Current state of CSAM inspection 
The current standard procedure for evaluating a CSAM im-
age is through manual inspection. A trained technician 
evaluates the image as a whole and determines if the wafer 
is problematic depending if a defect is observed. However 
with the number of devices on a single wafer in excess of 
55,000 units; a manual inspection can only be performed at 
the wafer-level due to cost and time limitations. As such, 
with manual inspection, only large defects are filtered re-
sulting in smaller defects proceeding further into the man-
ufacturing process or a wafer is scrapped and many poten-
tially viable devices are discarded. 
 
In addition to the large number of devices, the automotive 
semiconductor sector requires substantially high yield rates 
to achieve Zero-Defect strategy, which contributes to an 
extremely low amount of defective devices available. Fur-
thermore it is not necessary that any failures from the wafer 
stem from physical defects that can be detected by the 
CSAM. This then contributes to the lack of defect data in 
particular resulting in an extremely imbalanced dataset.  
 
As part of the standard, the CSAM images are produced by 
subjecting a wafer to a tool to perform the imaging. In full 
production, a standard resolution is utilized at 50 x 50 um 
per pixel. Further analysis of the image and the target de-
vice yields an area of interest no larger than 14x14 pixels. 
Some additional wafers were subjected to higher resolution 
scans but are not viable for mainline production due to the 
differentials in time and cost to perform these scans.  

1.3 Model selection 
 
With the defined objectives within the iRel4.0 project, the 
approach was designed to utilize machine learning meth-
ods to perform the evaluation of the devices for defect clas-
sification. However, given the nature of the semiconductor 
manufacturing industry, a supervised approach does not 
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appear to be practical. The reasoning for this can be based 
on the amount of work required to generate a well distrib-
uted training dataset encompassing all the desired defect 
classes and still be robust to be able to handle unseen or 
unknown defect classes. Furthermore the process would 
most probably need to be repeated for every single appli-
cation which would require extremely large amount of 
work for limited gains. 
 
As such a fully unsupervised approach was selected to au-
tomate the visual inspection of the CSAM images. This re-
duces the amount of work required to have a functional AI 
model with the capability to stop anomalies. This in turn 
could then be potentially utilized to begin gathering defect 
data to potentially be used in a more powerful supervised 
or semi supervised AI model. 

2 Methodology 

2.1 Image processing 
An automated script was built on open-cv in Python to au-
tomatically detect and map all devices within the CSAM 
image of the wafer to their corresponding entities within 
the production database at Elmos. This preliminary step en-
sures that all devices on the wafer are accounted for and a 
specified region of interest around the target device is iso-
lated for evaluation by the AI. The identification of poten-
tially good devices can be seen in Figure 2.  

Figure 2 Die detection by image processing. Obscured de-
vices are still mapped but marked as NOKs. 
 
A by-product of the above process is the automatic filtering 
of obviously defective devices when large defects/damage 
obscure the target device as in Figure 3. As part of standard 
protocol, these large defects will automatically fail all de-
vices within range if not the entire wafer. 

Figure 3 Example of extremely large defect  

2.2 Autoencoder  
The autoencoder is based of a standard convolutional auto-
encdoer with some fine-tuning to reduce the number of 
convolutional layers to accommodate the imaging limita-
tions. The block diagram of the autoencoder can be found 
in the following Figure 4.

 
Figure 4 Autoencoder block 
 
To function as an anomaly detector, the autoencoder model 
was trained on only good devices. Anomalies are then de-
fined by the difference between the output image and the 
input image. A threshold was then set to determine if the 
device is anomalous or good.  

2.3 Training and validation data 
For this work, a set of wafers were manufactured within the 
iRel4.0 project with cooperating partners. These wafers 
were manufactured with a variety of simulated defects of 
varying sizes in the two primary failure modes which are 
scratches and embedded particles.  
 
These wafers were then processed using the standard 
CSAM process as well as specially commissioned high res-
olution CSAM scans. Additionally, a subset sample of the 
devices was also tested to confirm failure of the device due 
to the manufactured defects.  
 
For validation of the results a random sample of production 
wafers were selected for evaluation by the trained AI 
method and the results evaluated by a trained engineer to 
determine performance of the system.  

3 Results 

3.1 Manufactured defect wafers 
After processing of the defect wafers, the model was 
demonstrated to be highly successful in detecting anoma-
lies within the device. The performance of the AI was eval-
uated at all resolutions with result as in Figure 4,5,6  
 

Resolution Defects detected Accuracy 
50x50 um 11/13 ~85% 
20x20 um 12/13 ~93% 
10x10 um 13/13 100% 

 
These results show that the unsupervised autoencoder ap-
proach can be extremely successful in detecting anomalies 
and its performance is limited to the actual resolution of the 
scans. For the missed defects, the size of the defects is ac-
tually smaller than the resolution resulting in the defects 
not being detected even through manual inspection. An ex-
ample of an anomaly being detected can be seen in the fol-
lowing figures.  
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Figure 4 Input image (left), Autoencoder output (middle),  
Diffrence (right) at 50um x 50um resolution.  
 

 
Figure 5 Input image (left), Autoencoder output (middle),  
Diffrence (right) at 20um x 20um resolution.  
 
 

 
 
Figure 6 Input image (left), Autoencoder output (middle),  
Diffrence (right) at 10um x 10um resolution.  
 
As can be visualized in the previous figures, the source res-
olution of the images play a critical role in the quality of 
the recreation of the autoencoder. However in situations 
where the anomaly information is not existent in the image 
due to the size of the defect being smaller than the resolu-
tion limits of the CSAM, these would not be detectable. 
  
The anomalies detected were then analysed and demon-
strated strong correlation with failure rates of the wafer. 
This can be seen in Figure 7 where the failure detection by 
the AI demonstrate the same bimodal behaviour as the test 
indicator. Due to ambiguity in the manufacturing process 
resulting in imperfect 1-to-1 traceability, it is not feasible 
to confirm that all failures stem from the physical defects 
detected by the AI. However given the nature of the defects 
manufactured into the wafers this behaviour is to be ex-
pected in the failure rate as the manufactured defects are 
expected to cause failures in the device.  
 
 
 

 
Figure 7 AI score (left) and test indicator (right) distribu-
tion.  

3.2 Production wafers  
The model was then applied to actual production wafers 
where the model was able to surpass manual inspection by 
detecting anomalies missed by the standard inspection pro-
cedure as can be seen in Figure 8. 
 

 
 Figure 8 Cluster of anomalous device detected(left) 
Normalized error of single device from cluster (right) 
 
Although judged to be non-critical, there were no available 
methods to verify that the anomaly detected did not cause 
a failure due to the current lack of single die traceability in 
the final pressure sensor system containing the pressure 
sensor as well as the signal conditioning IC in one package. 
Traceability toward the specific pressure sensor gets lost in 
the assembly process.  

4 Conclusion 
The presented work demonstrates an industrial application 
for unsupervised autoencoders surpassing human based 
optical inspection of CSAM images. This work can be fur-
ther extended to other optical inspection based tasks and 
have been utilized by Elmos for other image inspection ap-
plications. 
 
Although the AI model was demonstrated to achieve high 
performance, it is limited in great part to the original reso-
lution of the images. If the anomalous component or the 
defect is non-existent in the source image, the approach 
will be unsuccessful in detecting such defects. This should 
be taken as an indication to imaging vendors and test man-
ufacturers that with AI, large scale optical inspection is 
now possible and should be leveraged to improve quality 
and reliability of devices in any manufacturing process.  
 
Given the nature of manufacturing where stopping defec-
tive devices is extremely important, it is extremely valua-
ble to begin AI based control with an unsupervised ap-
proach to gather the required defect data or required infor-
mation to form a suitable dataset for more powerful super-
vised approaches that can allow engineers to automatically 
classify defects as well. 
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Investigation of the real-time feasibility of NMPC for air-path control 
in automotive fuel cell systems 
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Abstract  
This paper presents the development and evaluation of a nonlinear model predictive control (NMPC) algorithm in the 
context of air-path control for automotive fuel cell hybrid systems, with a focus on its real-time performance. The study 
is motivated by the need to establish real-time capability as a key criterion for the practical deployment of such advanced 
control systems. Our approach involves the design of an optimal control problem, followed by its efficient conversion 
into a nonlinear program, to which the sequential quadratic programming method is applied. The resulting quadratic 
programs are solved by the open-source numerical solver HPIPM. A notable outcome of this study is the controller’s 
mean turnaround time of 10.3 ms in numerical simulations on embedded hardware, utilizing a Gauss-Newton Hessian 
approximation. While this marginally exceeds the desired sampling time of 10 ms, our results demonstrate the potential 
of NMPC as a viable solution for managing the complexities inherent in automotive fuel cell hybrid systems, potentially 
contributing to enhance their operational reliability, efficiency and durability. 
 
 
1 Introduction  
Amid global efforts to reduce carbon emissions, fuel 
cells (FCs) have emerged as a promising zero-emission 
technology with diverse applications. Proton exchange 
membrane (PEM) FCs, which convert the chemical energy 
in hydrogen directly into electrical energy, have gained sig-
nificant attention in the automotive industry. Apart from 
zero local emission of harmful byproducts, they promise 
high efficiency, high power and energy density, rapid 
startup, low operating temperatures, and fast refueling 
time [1]. 
Typically, FC vehicles operate on a hybrid power system, 
combining a traction battery with a PEM fuel cell sys-
tem (FCS). The interaction between the battery and the 
FCS and the operating conditions within the FCS critically 
impact hydrogen consumption and lifespan of the fuel cell 
hybrid vehicle (FCHV). Therefore, effective control strat-
egies significantly contribute to optimizing FCHV perfor-
mance and ensuring robust operation across various condi-
tions [2]. They guarantee that the vehicle meets the power 
demands while maintaining safety and efficiency. To ad-
dress these control objectives, this work utilizes model pre-
dictive control (MPC). More specifically, we apply nonlin-
ear model predictive control (NMPC), as we expect the 
system behavior to be more accurately captured through a 
nonlinear prediction model, especially during rapid load 
changes. Obtaining a control model appropriate for NMPC 
use, including the judicious selection of control inputs, 
states, and outputs, presents its own set of challenges. Once 
a suitable model is established, the ability of NMPC to di-
rectly handle nonlinear dynamics, constraints, and objec-
tives, as well as systems with multiple in- and outputs, al-
lows for a natural translation of design requirements into 
mathematical statements. Nonetheless, a significant chal-
lenge in practical NMPC applications is solving the result-
ing dynamic optimization problem in real time. Thus, the 
primary focus of this paper is to address the demanding 
real-time constraints and assess the real-time capability of 
our proposed NMPC algorithm. 

1.1 State of the art 
Several researchers have addressed the challenge of real-
time capability in NMPC methods by developing numeri-
cal techniques to enhance their computational efficiency, 
which have been applied across various applications [3, 4]. 
Others have applied NMPC to automotive FCSs, but often 
neglecting the practical aspect of real-time capability [5, 
6]. Despite the available methods, achieving fast, reliable, 
real-time NMPC solutions remains a recurring challenge 
due to the intricacies of every application. 
Research addressing this gap remains limited. Schmitt et 
al. have notably demonstrated the real-time capability of 
NMPC algorithms for the air-path control of a small-scale 
FCS. In their studies, [7] uses a Wiener model as the con-
trol model, while [8] employs a physics-based control 
model. Efficient numerical integration schemes and con-
densing methods are explored in [8] and [9], respectively. 
This work, however, uniquely focuses on the FCS within 
an automotive hybrid power system, incorporating an aux-
iliary battery system to manage highly transient and safe 
operation. Furthermore, our work adopts more stringent 
time constraints compared to the sampling times in Schmitt 
et al.’s studies. 

1.2 Contribution 
This paper introduces an NMPC-based control algorithm 
designed for the air-path control of an automotive FCS 
within a hybrid power setup. The control objectives are for-
mulated within an optimal control problem (OCP), which 
is discretized efficiently to reduce computation time while 
maintaining simulation accuracy. The resulting nonlinear 
program (NLP) is solved via sequential quadratic program-
ming (SQP), employing a structure-exploiting solver for 
the emerging quadratic programs (QPs). Finally, we assess 
the algorithm’s real-time capability on a rapid prototyping 
platform. The paper is structured as follows: Section 2 out-
lines the control problem including the control architec-
ture. Section 3 presents the physics-based model of the 
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FCS and the hybrid power system. Section 4 details the
NMPC algorithm and Section 5 discusses simulation re-
sults.

2 Control task & control architec-
ture

Rapid response is crucial in automotive propulsion sys-
tems, often outweighing efficiency due to the need to adapt 
to quickly changing and unpredictable loads. The primary 
control objective for the FCHV is therefore to consistently 
meet dynamic power demands requested by the driver. The 
response capabilities of FCSs are, however, limited by the 
intricate dynamics of the FC stack and its balance-of-
plant (BoP) subsystems. More specifically, the dynamic 
performance is predominantly determined by the air-sup-
ply subsystem, as oxygen kinetics and mass transport be-
come the limiting factors when pressurized pure hydrogen 
is supplied. To address these limitations, a FCS is com-
monly integrated with a battery via a DC/DC converter.
Alongside performance, safe operation of the FCS is para-
mount. For the air path, this entails ensuring sufficient ox-
ygen excess ratio (OER) and adhering to compressor surge
and choke limits during transients. Moreover, a key goal is 
to optimize the FCS’s efficiency, achieved by operating the 
FC stack under favorable conditions and reducing parasitic 
losses, especially from the compressor, which can account 
for up to 14 % of stack power [10]. To address these con-
trol objectives, we adopt the control architecture depicted 
in Fig. 1.

Fig. 1 Schematic overview of the control architecture.

The high-level control consists of a power-split NMPC and 
a target selector. The NMPC manages the power distribu-
tion between the FCS ( , , ) and the battery
( , , ), executing on a 1 s sampling time. To this end, 
the underlying economic cost function maximizes FCS ef-
ficiency while maintaining a stable battery state of 
charge (SOC). At the same time, an equality constraint en-
forces adherence to the total power demand ( ), if fea-
sible. The optimization problem is based on a dynamic sin-
gle-state battery model and a static approximation of the 
FCS. Utilizing the static FCS model, the target selector em-
ploys a static optimization to derive a closed-form solution 
for the maximum FCS efficiency, given the required FCS 
power output , , . From the solution, we also obtain 
the compressor’s optimal operating point, given by the cor-
rected compressor mass flow rate , and pressure ra-
tio .
The low-level control comprises a tracking NMPC that di-
rectly manipulates the FCHV. This controller operates with
a 10 ms sampling time and integrates a dynamic model of

the FCS (Sec. 3.1 – 3.4) and a static model of the bat-
tery (Sec. 3.5). The references for the low-level NMPC, , , are derived from the total power demand, the opti-
mal power distribution from the power-split NMPC, and
the compressor’s optimal operating point. Its control objec-
tives include: (i) precise tracking of power demand, 
(ii) maintaining adequate OER, (iii) avoiding compressor 
surge and choke, (iv) following compressor setpoints and 
(v) ensuring real-time feasibility. For the latter, the related 
nonlinear optimization problem must be solved within 10 ms, which requires careful controller design. This is the 
focus of this paper.

3 Control-oriented model
The control-oriented model of the FCHV, utilized as the
prediction model within the low-level NMPC, consists of a
FCS and a battery, as depicted in Fig. 2.

Fig. 2 Schematic overview of the model structure used for con-
trol-oriented modeling the FCHV.

A typical FCS includes the FC stack and various BoP sub-
systems. Among those, we specifically only consider the 
air-path subsystem. The air-path components, including 
the compressor, inlet manifold, cathode, and outlet mani-
fold, as well as the stack voltage, are modeled based 
on [11]. The zero-dimensional model treats each air-path 
component as a single control volume, akin to a continu-
ously-stirred tank reactor, without any spatial variations. 
The dynamic states of the model stem from this lumped-
parameter approach to the air-path system, while the stack 
voltage as well as the battery are described by static alge-
braic expressions. For completeness, we provide most of 
the model equations in the subsequent sections.

3.1 Compressor model
A lumped rotational inertia is used to represent the com-
pressor with the compressor rotational speed :

Here, is the compressor motor torque and is the
load torque required to drive the compressor. The former is
calculated using a simplified static DC motor model

where , and are motor constants, is the motor
mechanical efficiency and the voltage is the motor 
control command. The latter is given by the thermody-
namic equation
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where is the constant-pressure specific heat capacity and
is the ratio of the specific heat capacities of air, is the

compressor efficiency, = is the ratio of the 
pressure inside the inlet manifold (Sec. 3.2) and the atmos-
pheric pressure, and is the atmospheric temperature. 
The compressor flow is = , where =288 K and = 1 atm. The corrected compres-
sor flow = ( , ) and the efficiency =( , ) are modeled using static maps. The temperature 
of the air leaving the compressor is

and the power consumed by the compressor motor is

3.2 Inlet manifold model
The inlet manifold includes pipe and stack manifold vol-
umes between the compressor and the FCs. Its dynamics is
governed by mass continuity and energy conservation
laws, which yield differential equations for the inlet mani-
fold mass and pressure :

Here, is the gas constant for ambient dry air, is the 
inlet manifold volume, and is the temperature of the 
flow inside the manifold, computed from the ideal gas law.
The exit flow, , is calculated as a function of and 
the cathode pressure (Sec. 3.3.2) using a linearized 
nozzle flow equation with nozzle constant , :

The oxygen mass fraction in the inlet manifold’s dry air,
, is derived from the oxygen mole fraction in the in-

coming ambient dry air, , using the molar masses of 
oxygen and nitrogen :

Finally, the outgoing mass flow rate of oxygen, , , is:

3.3 Fuel cell stack model
In this study, the modeling of the FC stack is focused on
two components: the stack voltage model and the cathode
flow model. The original model [11] encompasses a 
broader range of submodels, including an anode flow 
model and a membrane hydration model. In this adapted 
version, these are omitted to concentrate on the air-path dy-
namics.

3.3.1 Stack voltage model
Given that the FC stack comprises multiple FCs connected 
in series, and assuming that all cells are identical, the stack 

voltage is calculated as the product of the number of 
cells and the cell voltage: = . The combined ef-
fect of thermodynamics, kinetics, and ohmic resistance de-
termines the cell’s output voltage

where is the open-circuit voltage (OCV), is the ac-
tivation loss, is the ohmic loss, and is the con-
centration loss. A detailed explanation of the FC voltage,
also known as polarization characteristic, is provided 
in [11]. As we assume instantaneous electrochemical reac-
tion, the FC voltage is given as a static function of the cur-
rent density and the dynamically varying stack variables 
of oxygen and hydrogen partial pressures , cathode 
pressure , stack temperature and membrane humid-
ity . The current density is defined as stack current per 
unit of cell active area: = .
In this work, our focus is on the dynamics of the air-path
variables, specifically and . Consequently, we as-
sume perfect control of the anode pressure, i.e. = , 
and for further simplification, we set = . Addition-
ally, we assume that and are accurately controlled
with negligible delay to constant values of 80 °C and 12.5, 
respectively.

3.3.2 Cathode flow model
This model captures the dynamics of cathode airflow. By 
neglecting the presence of water vapor, the cathode’s dry 
air mass is equal to its total mass. Applying mass continuity
to the dry air and oxygen in the cathode volume , and 
utilizing the ideal gas law, we obtain

where is the universal gas constant, and the cathode air
temperature is assumed equal to the stack temperature

. Sec. 3.2 defines the inlet flow rates, while the outlet
flow rates are

Here, is obtained analogously to (8), with nozzle con-
stant , and outlet manifold pressure (Sec. 3.4).
Similarly, is determined as in (9), with = . 
Electrochemical principles are used to calculate the rate of
oxygen consumption from the stack current

where is the Faraday constant. The OER corresponds
to the ratio between the oxygen supplied and the oxygen
reacted:

3.4 Outlet manifold model
Contrary to the inlet manifold where temperature varia-
tions are significant, the outlet manifold temperature
is assumed constant and equal to . The outlet manifold 
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pressure is then derived using mass conservation and 
the ideal gas law

where is the outlet manifold volume. The air flow rate 
exiting the outlet manifold, , is calculated via the non-
linear nozzle equation for subcritical flow. It is dependent
on and back-pressure valve opening area, , 
with being the discharge coefficient of the nozzle:

3.5 Battery model
The battery is represented using a static circuit model, 
which depicts the battery as an OCV source ocv in series 
with an internal ohmic resistance . The terminal volt-
age bat is:

ocv is modeled as the sum of a constant term , a polari-
zation component pol, and an exponential term exp:

Both pol and exp are static functions of the battery SOC, 
with exp capturing the battery's nonlinear behavior. [12]

3.6 Power equations
The power generated by the FC stack, st, is the product of 
the stack voltage and the stack current: st = st st. To 
calculate the net power output of the FCS, fcs,net, we de-
duct the power used by the compressor motor, cm, and a 
fixed auxiliary power, aux, where aux accounts for the 
consumption of other actuators in the FCS:

The power losses in the DC/DC converter are accounted 
for using the converter efficiency DC/DC, which is modeled 
as a second-order polynomial fitted to measurement data:

For the battery, the net power bat,net is the product of the 
battery voltage and current, factoring in the quantity of bat-
tery packs and cells: bat,net = bat bat packs cells.
Power losses from DC/DC conversion are considered with 
the same converter efficiency as in (24):

Finally, the total delivered power del at the DC bus is

4 Low-level NMPC algorithm

4.1 Prediction model formulation
For simplicity, the dynamic states and output equations of 
the model in Sec. 3 are denoted as:

For MPC design, we adopt the delta formulation of (27).
This approach allows for constraints to be imposed on the 
rates of change of the inputs, while, given the application 
of multiple shooting, resulting in a sparse OCP structure of 
the ensuing NLP and QP subproblems. This structure is 
well-suited for the employment of efficient, structure-ex-
ploiting solvers. Accordingly, we form the following aug-
mented system based on the delta formulation:

The approach extends the state vector, denoted as in the 
augmented state space, to include the actuated variables, 
while the input vector comprises their rates of change.
The implementation of this augmentation can vary. In this 
work, we choose to augment the system dynamics prior to 
discretization. The resulting prediction model is

where the augmented state ( ) combines the current state ( ) with the input from the previous timestep ( ), 
while ( ) denotes the input's rate of change ( ). Note 
that, from this point forward, the augmented state and 
input vector will be referred to simply as and , respec-
tively.

4.2 Optimal control problem
The NMPC is defined by the OCP in (31). The objective 
function steers the outputs to its reference values ref( )

, starting from the initial state , and penalizes input 
changes over the prediction time p. The last two terms 
minimize the violation of soft constraints, where is 
the vector of slack variables. These are penalized both 
quadratically and linearly to ensure exact penalty.

To account for actuator limits, the inequality function im-
poses specific input constraints as part of the OCP:

The lower bound on the stack current is established to
avoid operation near OCV, which is a known catalyst and
membrane stressor [13]. Additionally, we constrain the
rates of change of the inputs to reflect unmodeled actuator
dynamics:

These actuator constraints are enforced strictly as hard con-
straints, allowing no violations. In contrast, safety and deg-
radation concerns are addressed through soft constraints 
with non-negative slack variables to ensure feasibility.
Compressor safety is ensured by the following:
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Moreover, to maintain adequate oxygen supply to the cath-
ode channels, OER is constrained to not fall below a 
minimum value, . Since = ( ), see (17), we 
implement an equivalent linear formulation of this con-
straint to avoid the introduction of unnecessary nonlinear-
ity:

4.3 Nonlinear program
In direct optimal control methods, the continuous-time 
OCP in (31) is discretized, resulting in a finite-dimensional 
NLP. Here, multiple shooting is applied and the NLP reads

with = , + and = {0, … , -1}.
The computational efficiency and effectiveness of the so-
lution obtained from the NLP hinge on key design choices 
in the transition from OCP to NLP. Here, we discuss the 
choice of the prediction horizon , the integration method 
with its step size, and the sampling time = .

4.3.1 Sampling time
The controller’s sampling time defines its maximum 
bandwidth. To determine the most suitable , we simulate 
the system and linearize it at various operating points. This 
approach involves an eigenvalue analysis of the resulting 
system matrices, from which the reciprocals of these eigen-
values provide the respective time constants for the sys-
tem’s modes. The analysis across varying power demands 
revealed time constants between 0.0096 s and 1.1015 s. 
Consequently, we select a sampling time of = 10 s
for our internal model, ensuring it aligns with the system’s 
fastest dynamics.

4.3.2 Numerical integration scheme
To identify a suitable integration scheme, we analyze the 
trade-off between discretization error and computational 
cost for various schemes. To this end, we apply both ex-
plicit (ERK) and implicit Runge-Kutta methods, specifi-
cally Gauss-Legendre and Radau IIa, to the prediction 
model, each across a range of integration steps from 1 to 10. For each scheme, we calculate the overall relative dis-
cretization error and monitor the computation time. 
This approach allows us to establish a Pareto front, which 
helps us identify the most efficient schemes based on accu-
racy and computational load. For instance, the explicit
schemes, when limited to a single integration step, domi-
nate for accuracies of 10 . Implicit schemes only 
begin to dominate on the Pareto front at higher accuracy 
levels. Considering the trade-off between accuracy and 
computational cost, we opt for the standard ERK with stage 
four, i.e. ERK4 scheme, for its satisfactory accuracy of (10 ) and computational efficiency among the schemes 
evaluated.

4.3.3 Prediction horizon
The selection of the prediction horizon in MPC is crucial 
as it defines the extent to which the controller anticipates 
future events. Ideally, should align with the system’s 
slowest dynamics to allow the MPC to adequately account 
for the impact of its control actions. Our analysis in 
Sec. 4.3.1 indicates that a prediction horizon of = 110
would match the slowest system dynamics. However,
longer horizons increase the size of the optimization prob-
lem, affecting execution time and memory usage. Through 
evaluating the relative cost difference w.r.t. to a horizon of = 130 and the mean computation time for solving the 
optimization problem in closed-loop for various horizons, 
we established the specific trade-off between cost and com-
putational efficiency. Balancing these factors, we select a 
prediction horizon of = 35, which keeps the cost in-
crease under 1 % and has a low computation time in com-
parison to the tested horizons.

4.4 Sequential quadratic programming
An SQP method applied to the NLP in (32) proceeds in 
each iteration by solving the following structured QP sub-
problem:

where = and = with = [ ] .= ( ), = ( ), , = ( ) and , =( ) denote the constraint Jacobian matrices. At its 
core, the SQP algorithm successively linearizes the NLP
around the current iterate , solves the QP subproblem 
and updates the current iterate by = + . Note 
that, two simplifications are made here: (i) slack variables 
are not implemented and (ii) the Hessian is the second de-
rivative of the cost functional instead of the Lagrangian.
In addition, we apply the SQP method that employs the 
Gauss-Newton (GN) Hessian, i.e. = ( ) ( ), 

with = , .
In both cases one SQP iteration is performed per sampling
instant and the solution is shifted to obtain an initial guess 
for the next instant. A maximum number of six QP itera-
tions is allowed where the step size is set to 0.5.
The algorithm is implemented in MATLAB/Simulink [14]
using the symbolic framework CasADi [15]. The algorithm
is then run on the embedded platform, which is a dSPACE
MicroLabBox with an NXP (Freescale) QorlQ P5020, 
dualcore, 2 GHz, 1 GB DRAM processor. The QPs are 
solved using the structure-exploiting QP solver from 
HPIPM [16].

5 Simulation results
We evaluate the proposed control scheme in a step re-
sponse scenario characterized by rapid, substantial changes 
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in power demand, as illustrated in Fig. 3a. Closed-loop 
simulations are performed against the prediction model, 
employing three solution methods for the low-level 
NMPC: (i) solving the NLP with IPOPT [17], (ii) applying 
the SQP method, and (iii) applying the SQP method with 
GN Hessian approximation. The tracking performance and 
constraint compliance of these methods are depicted in 
Fig. 3 and Fig. 4, respectively.

Fig. 3 Tracking of power references and compressor setpoints.

All employed methods demonstrate effective and suffi-
ciently dynamic output tracking behavior, with the control 
errors converging towards zero offset for all outputs, as an-
ticipated in the absence of model mismatch.

Fig. 4 Compressor choke and surge (a) and OER constraint (b).

The step response scenario poses a significant challenge for 
constraint compliance. Yet, while all controllers closely 
approach the surge, choke, and OER constraints for opti-
mality, they do so without violating them. Despite the SQP 
methods not incorporating slack variables, and their under-
lying Hessians omitting constraint considerations, the 
closed-loop control results achieved by SQP are very close 
to those obtained using IPOPT. In fact, the disparity in the 
output and constraint trajectories between them is on the 
order of (10 ). The mean (worst-case) turnaround times 
on the dSPACE MicroLabBox are 11.2 ms (12.2 ms) and10.3 ms (11.4 ms) for the SQP method and SQP method 
with GN Hessian, marginally exceeding the 10 ms sam-
pling time and thus not fully meeting the real-time capabil-
ity requirement.

6 Conclusions
We presented an NMPC design that effectively formulates 
the control problem relevant to the air-path control in a

FCHV as an OCP. This is efficiently transcribed into an 
NLP, considering computational cost and solution quality. 
The resulting algorithm, utilizing different solution meth-
ods, proves capable of accurate power tracking and com-
pliance with safety constraints. We evaluate the computa-
tional performance of two different solution methods on 
embedded hardware, finding that the SQP method with a 
GN Hessian outperforms the alternative. To further en-
hance computational efficiency, future work might explore 
the use of condensing algorithms or different formulations 
of the prediction model.
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Abstract
As the autonomous vehicles market is expected to grow in the future, their functionalities will increase too, leading to

complex embedded computer systems. To address this, organic computing has emerged as a research area that takes

inspiration from biological entities to handle complex distributed embedded computer systems. Organic computing has

improved adaptability and robustness, while also reducing development efforts. However, it has some drawbacks in terms of

determinism, composability, and dependability, which are key features for safety-critical applications. Distributed computer

systems using time-triggered communication networks possess these characteristics and thus show distinct advantages for

safety-critical systems. By combining artificial DNA and hormone features with time-triggered communications, we can

make these systems safer, more reliable, and suitable for safety-critical applications. Therefore, we present a time-triggered

organic computing architecture where the time-triggered schedule is produced by a list scheduling algorithm during run-

time. All the tasks on the systems are executed according to the computed schedule. To demonstrate the concepts and

the system model, we performed evaluation test in a simulator in which the system executes tasks according to predefined

schedules. The evaluation of use cases shows improved temporal predictability and fault containment.

1 Introduction

The market demand for autonomous vehicles has increased

in recent years and is expected to grow exponentially in the

future. This increase in demand will result in vehicles with

complex functionalities, leading to challenges in their han-

dling, especially in fault situations. In current designs, the

human driver provides adaptability and flexibility in chal-

lenging driving situations, so driver assistance functions do

not need to be fail-operational. As we move towards self-

driving vehicles, more and more driver assistance functions

will need to be fail-operational, i.e., they will need to provide

system services even in the event of faults (such as failure of

computing nodes or sensors). Therefore, we need comput-

ing systems that can dynamically and autonomously adapt to

these complex situations and provide sufficient redundancy

at a limited cost. IBM defines systems as autonomous if they

contain self-x properties (such as self-organization, self-

healing, self-configuration) [9]. Organic Computing (OC)

is a paradigm for organizing distributed computer systems

with a high degree of flexibility and self-healing, which is

inspired by the concepts and principles of biological sys-

tems. It adapts the working principles of organic systems

to manifest their self-organizational nature into complex

embedded systems. This is done by employing an Artifi-

cial Hormone System (AHS) as a real-time middleware that

brings improved adaptability and robustness by exhibiting a

self-organizing mechanism that can self-configure and heal

the system. This is achieved by exchanging artificial hor-

mones (i.e., small messages) between all computing nodes in

a distributed system to determine the suitability of task allo-

cations, initially in the start-up phase (self-configuration), in

the event of node failures (self-healing) and after potentially

degrading system services (reconfigurations). However, the

AHS currently lacks support for dependability, determin-

ism, and composability, which are crucial for safety-critical

systems such as autonomous driving systems. On the other

hand, this is provided by time-triggered systems. Such sys-

tems ensure resource adequacy and predictability through

a priori scheduled tasks and messages. Knowledge of the

permitted temporal behavior of components allows effective

fault containment in the time domain and simplifies certifi-

ability. In addition, in this paper a Time-Triggered Organic

Computing (TTOC) architecture for the automotive domain

has been presented that combines the advantages of both

organic computing and time-triggered systems. The flexi-

bility in terms of task (re-)allocations is maintained by the

artificial hormone system and the predictability is realized

by a list scheduler that will organize task execution times,

message injection times, and message paths. Furthermore, it

deals with the distributed scheduling problem in the TTOC

environment for each computing node. In typical designs,

the scheduler organizes the temporal and spatial allocation

of both tasks and messages, but in the proposed architecture

the AHS middleware handles the allocation of application

tasks to ECUs meanwhile the scheduling algorithm will han-

dle execution times and message paths. The paper is divided

as follows: In section 3 it provides a short introduction to the

specifics of OC and gives an overview of the combination of

time-triggered concepts with OC. Section 4 will discuss the

scheduling problem for the TTOC and the newly proposed

algorithm designed by us. Section 5 describes the evalua-

tion of concepts that have been proposed using the TTOC

simulator. Section 6 draws the conclusion and the future

work.

2 Related Work

Self-X properties of autonomous systems have been an area

of research that has received significant attention over the

past few years. Organic Computing was established as a
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research field by Deutsche Forschungsgemeinschaft (Ger-

man National Science Foundation) in 2003 [8] to bring the

principles of biological systems into distributed computer

systems. A distributed self-organization OC based on the

observer/controller architecture is introduced in [12] with

the ability to control unexpected behaviors of the system.

Another observer/controller design is developed in [3]. This

OC system is tested on a traffic light controller. In addition,

there have been OC constructed from different approaches.

Similar to how genetic instructions encode the functioning

and growth of organisms, ADNA can also encode the struc-

ture and organization of embedded computer systems [4]

and store it inside each computing node (ECU), following

the same principles as biological DNA. An additional, or-

ganic computing technology inspired by biological systems

has been established at [7]. It is a real-time middleware

based on an artificial hormone system. This middleware ex-

hibits self-organizing property, allocating tasks to the most

suitable processing node by itself. AHS uses artificial DNA

to construct distributed embedded systems.

Furthermore, significant research has been conducted to in-

troduce self-organization and OC properties in the automo-

tive domain. OC will handle the increasing complexity of

embedded systems in the autonomous vehicle sector. The

dynamic concepts of ADNA and AHS can be used in AU-

TOSTAR [6]. Moreover, organic computing has also been

used to improve the dependability of automotives as de-

scribed in [10]. About the middleware layer, an autonomic

middleware for automotive embedded systems that exhibits

high flexibility and automatic runtime reconfigurations is

presented in [1]. An alternative middleware approach [2]

dynamically configures automotive embedded systems by

providing transparency and flexible platform-independent

support for portability.

The proposed architecture combines time-triggered con-

cepts with organic computing, based on artificial hormone

system middleware for autonomous vehicles. This time-

triggered OC middleware achieves high flexibility and reli-

ability that comes from the self-x properties and predefined

task execution. The schedules get dynamically calculated for

each computing node by a heuristic scheduling algorithm.

3 Time-Triggered Organic Computing Archi-
tecture

We have taken inspiration from the concept of ADNA and

AHS, two organic computing technologies following the

same philosophy as biological systems. ADNA and AHS

offer several advantages, such as robustness, reduced devel-

opment efforts, and increased adaptability. In section 1, we

proposed combining ADNA and AHS with time-triggered

concepts to make embedded systems more deterministic and

reliable. We call this new architecture Time-Triggered Or-

ganic Computing (TTOC). To begin with, in this section, we

provide a brief overview of ADNA and AHS, followed by a

detailed explanation of the new architectural concepts.

3.1 Artificial DNA

Different complex embedded systems can be constructed

by inserting the structure and organization of the system

in a single file and storing it in each computing node [5].

The functionalities (e.g., task structures and messages) are

encoded in the ADNA file using simple basic elements.

ALU
Sourcelink

PID
Destinationlink

Id = 1

Sensor

Id = 500

Actuator

Id = 600

Sourcelink

Sourcelink
Id = 10

Destinationlink Destinationlink

Figure 1 Different basic elements

Figure 1 exemplarily shows functional basic elements of

an embedded system (e.g., filters, actuators, sensors) where

Sourcelink denotes a reactive link that responds to incoming

requests and Destinationlink is an active link for sending

requests. In the automotive domain, a basic element can

also be, for example, the ABS functionality. In the current

designs, the ABS is bound to a fixed ECU and a backup

one. In case of a failure in both ECUs, the system loses

the ABS functionality, which may lead to wheels locking

up during breaking. With the ADNA file located in each

processor core, the ABS functionality will be transferred to

other active ECUs, thus preventing the lockup of the wheels.

3.2 Artificial Hormone System

The AHS middleware is designed to read the ADNA com-

puter file and create system functionalities. It can also imple-

ment other self-x features, such as self-configuring, where

the system reconfigures itself during run-time. Once the

tasks are created, AHS will allocate them to specific com-

puting nodes based on their suitability, organizing the sys-

tem (self-organization) accordingly. For example, in control

loops, tasks from the PID controller will have higher suitabil-

ity on computing nodes that perform arithmetic calculations

better.

Local Eager
Values

Received
Accelerators

Received
Suppressors

a > b ?

Received Eager
values

Tasks

Modified
Eager
Values

a

b

Accelerator

Suppresor

Figure 2 Hormone Loop of AHS

Furthermore, AHS also distributes tasks to minimize

communication distances (self-optimizing). Each ECU ex-
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ecutes an hormone loop for sending hormones and calculat-

ing task suitability from these hormones. Each task contains

three main hormone types: Suppressors for lowering suit-

ability, Accelerators for increasing suitability, and Eager
values for determining task suitability of the ECU. The hor-

mone loop shown in Figure 2 sums up all received accelera-

tors, suppressors, and local eager values, and compares these

results with received eager values. AHS advantages rely

on self-x properties such as self-organization, self-building,

self-optimization, and self-healing. In AHS, the system is

self-organized because task distribution is done internally

by exchanging hormones between the nodes, taking into

consideration the suitability of tasks but also the load of

a node. The system becomes more optimized by prevent-

ing electronic control units from experiencing high loads.

The entire system is built using simple artificial DNA files,

which allows for reconfiguration in the event of computing

node failure. In such cases, all tasks are migrated to other

computing nodes.

3.3 Time-Triggered Architecture

Distributed embedded computer systems are built using

nodes consisting of communication controllers and com-

puter hosts that communicate via time-triggered networks.

In the TTOC, each ECU will serve as one node of the system

as presented in Figure 3.

ECU ECU ECU ECU

Communication Network Schedule for message transmission

TTOC System

Application
Task

Application
Task

Hormone
Task

Dispatcher

Task1y Task2y Task3yIdle Idle Idle
s f

Task4y
s s sf f f

Scheduled start/finish times of tasks

Hormone Task

Exchange suppressor & accelerator

Exchange eager value

Exchange organ accelerators

Decide task allocation

Update TDMA table at selected ECU

Figure 3 Time-Triggered Organic Computing Architecture

In organic computing based on ADNA, different ECUs

concurrently perform various tasks, such as sensor or ac-

tuator tasks. In distributed embedded systems, ensuring

a guaranteed consistent system behavior is crucial. This

is achieved by processing events on all nodes in the same

consistent order. Using a global time base to execute op-

erations ensures the same order for all nodes, which brings

determinism to the system. Being predictable makes the

systems deterministic, thereby increasing overall reliability.

The global time is also utilized for error detection, commu-

nication protocols, and interfaces of the nodes. For instance,

in the case of a babbling idiot failure, where a computing

node sends untimely messages, all nodes have predefined

times when they can communicate. If communication oc-

curs outside the specified time, bus guardians will block the

messages that occur outside of the predefined time slots.

In TTOC, any communication network that supports time-

triggered concepts is suitable. At the operating system layer,

each ECU has a task dispatcher and a time-triggered sched-

ule. The dispatcher is responsible for reading the schedule

and executing different tasks at particular points in time. A

schedule table with the start and finish execution times of the

tasks is shown in Figure 3. In the architecture, alongside the

application tasks from the application model, such as sensor

data, there are also the TTOC middleware tasks composed

of hormone message exchange, which is also time-triggered.

The ECU can also be in an idle stage, where it waits for the

next task to be processed.

4 Scheduling

There are two types of real-time applications, hard and soft.

If the failure of meeting the deadline causes a fatal fault this

is called a hard deadline. It is called soft where missing the

deadline will not have a big impact on the application. For

autonomous vehicle systems, if the deadlines are missed, the

caused failure can lead to vehicle malfunction. To be able

to ensure that all application tasks will meet their deadlines,

real-time scheduling must be performed. The scheduling

algorithm determines the order of the tasks that are going to

be processed by the computing system.

There are two types of scheduling algorithms: static

and dynamic. If the task priorities and the execution times

are determined before the program starts, the scheduling

is static. In dynamic scheduling, everything must be cal-

culated during the run-time of the system. The scheduler

comes up with a scheduling algorithm for the system, which

is in two forms: preemptive or non-preemptive. In the pre-

emptive form, if a task with a lower priority has blocked one

with a higher one, the process with lower priority will be

terminated, allowing the execution of the higher one. In the

non-preemptive the process does not terminate but it waits

until the CPU burst time is complete. In classical designs,

the scheduler organizes:

• Allocation of application tasks to computing nodes

• Application task execution times

• Message injection times

• Messages paths

In the proposed architecture, this process is split and per-

formed incrementally. The AHS middleware first deter-

mines the allocation of tasks (of the application) in the sys-

tem at run-time, without execution times, thus allowing for

the desired flexibility that saves hardware cost, yet realizing

the same level of redundancy. The list scheduling algorithm

in TTOC then dynamically calculates the tasks execution

times along with the message injection times and paths for

the application messages, according to the given tasks as-

signments. The hormone exchange middleware tasks that

run on each ECU are also time-triggered, but their timing

within the schedule period is predefined.
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4.1 List Scheduling

As mentioned, in TTOC the scheduling algorithm must be

computed at each ECU dynamically without knowing the

priorities of tasks. The dynamic scheduling algorithm that

has been taken into consideration for TTOC is List Schedul-

ing (LS). List scheduling is a process used to schedule tasks

represented as a directed acyclic graph (DAG).

Task 1 Task 3 Task 5 Task 4

Task 2 Task 7 Task 6

Task 9 Task 8

1414

10

1414

10
10

14

66 8876

7090

50

90

80 90

14

Figure 4 Example of DAG graph

There is a DAG graph consisting of nine application

tasks and their worst case execution times (wcet) alongside

message size as shown in Figure 4 . The tasks are arranged

based on their depth in the graph and the time required for

their execution. Each task is represented by a node and de-

pendencies between them are represented by edges in the

graph. The scheduling algorithm determines the order in

which the tasks should be executed and aims to assign each

task to an available computing unit (ECU). It takes into con-

sideration the data dependencies, timing constraints, system

model, critical path, scheduling priorities, and optimizing

for factors such as load balancing together with minimizing

idle time. Since the spatial allocation is taken care of by

TTOC middleware, the AHS will start processing the hor-

mone loop tasks based on their execution order. For that

reason, it is important to analyze and set the execution order

of tasks.

In our above DAG graph (Figure 4), task two is data de-

pendent from task one and task three because the messages

that arrive from them are needed for its computations. In

this case, task two must wait for the messages coming from

task one and task three before it can start executing. Task

one and task three are denoted as immediate parents of task

two. For the timing constraints, as it is written in the entry of

the section, in our case our system must meet hard deadlines.

For the system model, Figure 3 describes that each ECU will

execute the scheduling algorithm and produce its own sched-

ule. In addition, the critical path in the DAG is calculated by

taking into consideration the computation time (WCET) of

ECU and the communication times (message size) on that

particular path. Hence, we start processing tasks from the

most critical path of the DAG. The b-level has been used to

determine the node levels and scheduling priority.

After the tasks are ordered, the AHS can start the hor-

mone loop to determine the suitability levels of the task and

assign it to the most suitable ECU. Only then the schedul-

ing algorithm can produce the temporal allocation of the

application tasks and the (spatial + temporal) allocation of

messages. The algorithm below describes the procedure for

schedule generation of each task. As an input, the algorithm

will take the application task that has to be scheduled. As

stated, the TTOC middleware tasks will also be executed in

a time-triggered manner, which is why they will have pre-

defined slots on the schedule in each period. The period

of these fixed slots is denoted as the TTOC period and the

whole period as the hyper period. This means that all the

application tasks and messages will need to be scheduled

after the TTOC period, otherwise the AHS will not allocate

application tasks to ECU and the whole system will mal-

function. For this reason, in the algorithm, it is constantly

checked if the start time, or the start time plus the width

of the application tasks, does not overlap with the TTOC

period.

Algorithm Schedule(ECU)
Data: Task to be scheduled

for all tasks parents do
for Parent sending messages do

if Message receivers Id == Task ID
then

if Tasks run on same ECU then
Message schedule generation;

Update TDMA table of ECU ;

end
if Tasks run on different ECU then

Message schedule generation;

Update TDMA table of ECU;

end
end

end
end
if Task is not scheduled then

Task start time == ECU time ;

if Task is the first one to be scheduled then
Task schedule generation;

Update TDMA table of ECU;

end
if Task start time < hyper period + TTOC
period then

start time = hyper period + TTOC

period;

Task schedule generation;

Update TDMA table of ECU;

end
if Task start time + task wcet > hyper
period + TTOC period then

start time = 2 * hyperperiod +

TTOCperiod ;

Task schedule generation;

Update TDMA table of ECU;

end
end

Furthermore, the complexity increases since the sched-

ule is calculated for one task at a time. Since the allocation

of the tasks that receive messages from the task that is being

scheduled is not present till the AHS assigns it on an ECU,

only the temporal allocation can be calculated.
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Figure 5 Schedule generation example per each ECU

The solution proposed is to first schedule all the incom-

ing messages from all the task parents and then continue

with the application task schedule. Figure 5 represents the

schedule generation phase for each ECU that happens dy-

namically while the system is running.

TTOC
Middleware

Tasks

ECU

Hyper Period

TTOC tasks period

Application
Task 2Message Message

Figure 6 Schedule generation example per each ECU

5 Evaluation of use cases

In the evaluation part, we tested the new scheduling algo-

rithm, the time-triggered concepts of TTOC, and the self-x

properties of OC. The simulations were conducted on the

TTOC simulator developed by [11]. In this system, the

ECUs are implemented as processing elements that contain

a task dispatcher, which utilizes a schedule to execute AHS

middleware tasks or dummy application tasks.

5.1 Testing List Scheduling

For the testing of a list scheduling algorithm, the TTOC

simulator has been used. In this simulator, automotive ap-

plication tasks are represented in the form of dummy tasks.

For the schedule calculation, multiple JSON files, that con-

tained different applications and physical models, were used.

The range of application models varies to examples up to

forty tasks and with a total of fifty messages. All the results,

from the ordering of tasks, spatial and temporal allocations,

and execution times of the dispatcher are dumped into a log

file. The analysis of the log file concludes that the schedule

is generated dynamically as intended on each ECU.

5.2 Testing Time-Triggered Concepts

For the time-triggered concepts, we are interested in the

system executing application tasks and communication of

messages, according to the generated table schedules. As

stated in this section, in the TTOC simulator each ECU

contains a task dispatcher that operates based on the time-

triggered schedule. To evaluate the reliability of the TTOC

architecture, babbling idiot failure was tested on the system.

A random ECU was chosen to send untimely communica-

tion messages to the other ECUs. The results showed that

the failed ECU was blocked from transmission outside its

predefined communication schedule.

5.3 Testing Self-X Properties

We want the time-triggered organic computing to exhibit

also the self-x properties. By creating artificial DNA

files, that describe embedded systems in the automotive

domain, and feeding these files into the TTOC simulator,

it is possible to test the self-building property. Furthermore,

with the AHS properties residing in the simulator the self-

organization and self-configuration of the middleware can

be examined. Here, we are particularly interested in the case

of failures of ECUs, if the functionalities of the ECU will be

transferred to the other ones, and in the system reconfigura-

tion. In the simulator, it is possible to create timed events

that denote ECU failures. By implementing this feature, we

observed that right after the ECU was in a failure state, the

system reconfigured and reorganized itself, with all the tasks

distributed to the remaining ECUs.

6 Conclusion and Future Work

In this paper, we propose the building of a scheduling al-

gorithm that will serve to calculate table schedules dur-

ing run-time for the newly proposed time-triggered organic

computing architecture. TTOC architecture is based on the

combination of self-x properties residing in ADNA and AHS

with time-triggered techniques to improve the reliability, de-

terminism and safety of embedded systems in autonomous

driving vehicles. The TTOC architecture enhances the tem-

poral predictability of the system by ensuring that all tasks

are executed at specific times. In addition, the simulation

results performed on the TTOC simulator showed that the

functionalities of ADNA and AHS remained unchanged.

For our future work, we are planning on testing the com-

munication network between ECUs in the network simula-

tor called OMNet++. The selected time-triggered network

is Time Sensitive Network (TSN). The interaction between

the network simulator and TTOC process will be handled by

a new designed co-simulation controller. Furthermore, we

want to test our new architecture with an autonomous driv-

ing vehicle simulator like CARLA. In this case we can test

our architecture with real autonomous driving application

tasks.

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

77



Acknowledgment

This work was supported by research project SelfAutoDOC

funded by the German Federal Ministry for Economic Af-

fairs and Climate Action (BMWK).

References

[1] Richard Anthony, DeJiu Chen, Martin Törngren,

Detlef Scholle, Martin Sanfridson, Achim Rettberg,

Tahir Naseer, Magnus Persson, and Lei Feng. Auto-

nomic middleware for automotive embedded systems.

Autonomic Communication, pages 169–210, 2009.

[2] Richard Anthony, Paul Ward, DeJiu Chen, Achim Ret-

tberg, James Hawthorne, Mariusz Pelc, and Martin

Tørngren. A middleware approach to dynamically con-

figurable automotive embedded systems. 5 2010.

[3] Jürgen Branke, Moez Mnif, Christian Müller-

Schloer, Holger Prothmann, Urban Richter, Fabian

Rochner, and Hartmut Schmeck. Organic computing–

addressing complexity by controlled self-organization.

In Second International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Vali-
dation (isola 2006), pages 185–191. IEEE, 2006.

[4] Uwe Brinkschulte. An artificial dna for self-

descripting and self-building embedded real-time sys-

tems. Concurrency and Computation: Practice and
Experience, 28(14):3711–3729, 2016.

[5] Uwe Brinkschulte. Technical report: Artificial dna-

a concept for self-building embedded systems. arXiv
preprint arXiv:1707.07617, 2017.

[6] Uwe Brinkschulte, Eric Hutter, and Felix Fastnacht.

Adapting the concept of artificial dna and hormone

system to a classical autosar environment. In 2019
IEEE 22nd International Symposium on Real-Time
Distributed Computing (ISORC), pages 35–42. IEEE,

2019.

[7] Uwe Brinkschulte, Mathias Pacher, and Alexander von

Renteln. An artificial hormone system for self-

organizing real-time task allocation in organic mid-

dleware. In Organic Computing, pages 261–283.

Springer, 2009.

[8] DFG Schwerpunktprogramm 1183 Or-

ganic Computing, 2005–2011.

https://gepris.dfg.de/gepris/projekt/5472210.

[9] Jeffrey O Kephart and David M Chess. The vision of

autonomic computing. Computer, 36(1):41–50, 2003.

[10] Timo Kisselbach, Simon Meckel, Mathias Pacher,

Uwe Brinkschulte, and Roman Obermaisser. Organic

computing to improve the dependability of an auto-

motive environment. In International Conference on
Architecture of Computing Systems, pages 211–225.

Springer, 2022.

[11] Mario Qosja, Simon Meckel, and Roman Obermaisser.

Simulator for time-triggered organic computing. Pro-
cedia Computer Science, 220:127–134, 2023.

[12] Urban Richter, Moez Mnif, Jürgen Branke, Chris-

tian Müller-Schloer, and Hartmut Schmeck. Towards

a generic observer/controller architecture for organic

computing. In Christian Hochberger and Rüdiger

Liskowsky, editors, INFORMATIK 2006 – Informatik
für Menschen, Band 1, pages 112–119, Bonn, 2006.

Gesellschaft für Informatik e.V.

Automotive meets Electronics & Control 2024 ∙ 14. – 15.03.2024 ∙ Dortmund

78



Robust Navigation of Autonomous Transport Units in the Extractive
Industry*

David Benz1, Dirk Abel1

Abstract— Autonomous driving in temporarily GNSS-denied
environments is challenging. Vehicle controllers of autonomous
transport units require continuously precise information about
vehicle position, speed, and heading. To cope with areas with no
satellite signal reception, we introduce a multi-sensor navigation
filter for articulated vehicles that fuses measurements from
an inertial measurement unit (IMU), global navigation satellite
systems (GNSS), wheel encoders, an optical speed sensor, and
a barometer. Non-holonomic vehicle constraints are considered
as well in the state estimation. The navigation filter uses
two unscented Kalman filters (UKF) with a global fusion of
the locally estimated states. This approach achieves improved
robustness regarding single sensor failures compared to a
centralized integration of all sensors in one filter. The developed
navigation filter is evaluated experimentally with an articulated
dumper in a gravel pit. With the proposed method, we achieved
a mean position error of 0.19m during a 190 s test drive in a
gravel pit with a simulated GNSS interruption of 90 s.

I. INTRODUCTION

The production of renewable energy generation equipment

requires various mineral raw materials and therefore demands

a massive expansion of the mineral resource extraction. One

way to meet the increasing demand for mineral resources is

to automate the processes involved in the extraction. With

autonomous transportation units, material transport could be

automated. Autonomous driving requires continuous infor-

mation about the vehicle’s position, speed, and heading.

GNSS is commonly utilized to calculate this information.

In open-pit mines, however, the reception of those signals is

not guaranteed due to the deep funnel-shaped structure. One

way to overcome this problem is to use a sensor fusion.

State-of-the-art navigation is done by fusing inertial mea-

surements and GNSS measurements within a Kalman filter.

Inertial measurements are processed within the prediction

step using the strapdown algorithm [1]. Pseudoranges and

deltaranges obtained from a GNSS receiver are used to cor-

rect the propagation. Under normal conditions, this approach

leads to sufficient accuracy. However, without continuous

GNSS measurements, the accuracy decreases within seconds

as measurement noise of the inertial measurement unit (IMU)

disturbs the strapdown algorithm. Integrating further sensors

helps to overcome this drawback.

Odometry describes the use of information from the drive

train to obtain changes in position and heading. Modern

*This work was funded by the German Federal Ministry of Education
and Research in the research project ARTUS (grant 033R126DN)

1D. Benz and D. Abel are with the Institute of Automatic Control, RWTH
Aachen University, 52074 Aachen, Germany
d.benz@irt.rwth-aachen.de

odometry methods are lidar [2], radar [3] and visual odome-

try [4]. These approaches extract the movement information

not from the drive train but from perception sensors. To

achieve acceptable accuracy for autonomous driving, the

algorithms require sufficient textures in the environment.

Large open-pit mines cannot always provide this textured

environment.

Wheel encoders are the most common way to measure

movements [5]. They operate reliably in rough mining terrain

but have one major drawback. Measurements from a slipping

wheel will be misinterpreted within the filtering algorithm.

Optical speed sensors on the other hand deliver odometry

information as well but are not affected by slip as they mea-

sure the velocity over ground. However, due to the optical

measuring principle, measurements on certain surfaces, such

as puddles, can be incorrect [6].

In this work, we propose a federated fusion architecture

with two unscented Kalman filters (UKF) and a following

single-epoch fusing algorithm. This architecture was initially

proposed by [7]. It allows the combination of several dif-

ferent filters. This means that not only different sensors

can be used, but also the process models can vary. The

prerequisite is that all local filters estimate at least one subset

of the same states and provide a covariance matrix [8]. In

our case, two state-of-the-art navigation filters fuse IMU,

GNSS, and barometer measurements. One filter is further

aided by measurements from an optical speed sensor and the

other one by wheel odometry measurements. Both navigation

filters were already successfully evaluated in [6] and [9]. We

expect from the federated architecture a more robust state

estimation.

This work is based on previous developments of our

research group. In [10] and [11] was already shown that

fusing inertial measurements with pseudo- and deltaranges

from GPS and Galileo leads to a highly accurate state

estimation. The benefits of GNSS integrity and differential

corrections are shown in [12] and [13]. In [14], [6], [9], [15],

the integration of optical measurements, the use of wheel

odometry and the integration of nonholonomic constraints is

explained, evaluated, and discussed in detail.

The remainder of this paper is structured as follows:

Section II describes the underlying methods. Section III

describes the hardware setup and evaluation protocol. In

Section IV, experimental results are presented and discussed.

A conclusion and outlook are given in Section V.
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Fig. 1: Federated integration of IMU, GNSS, barometer,

wheel odometry and optical speed sensor (Correvit) mea-

surements (figure based on [8]).

II. METHODS

A. Navigation Filter Overview

The navigation filter utilizes the federated filtered integra-

tion architecture from [7] and [8], shown in Fig. 1. Each

underlying navigation filter is implemented as UKF and

estimates 18 states:

x = [pe
eb

T vn
eb

T qn
b
T ba

T bg
T cb cd]

T. (1)

The state vector consists of the three-dimensional position of

the body frame origin (b) with respect to the Earth-Centered-

Earth-Fixed (ECEF) frame (e) pe
eb, the three-dimensional

velocity of the body frame with respect to the ECEF frame in

navigation frame (NED) coordinates (n) vn
eb, the quaternion

representing the alignment of the body frame to the naviga-

tion frame qn
b , the biases of the accelerometer triad ba, the

biases of the gyroscope triad bg, the GNSS receiver clock

bias cb, and the clock drift cd.

A schematic of UKF 1 is depicted in Fig. 2. UKF

2 is implemented accordingly. The filters are initialized

with the position, velocity, and heading calculated by the

GNSS receiver. Within the GNSS preprocessing, common-

mode signal errors are corrected with reference station data

received via mobile connection before feeding them into

the filters, according to [13]. Further, an integrity check is

performed according to [12].

B. Process Model

The navigation filter uses a 6-DoF nonlinear discrete-time

state-space model to estimate the states:

xk+1 = fk(xk,uk)Δt+ xk +Gkwk, (2)

where k denotes the time step of length Δt. The matrices

fk and Gk are defined as follows:

fk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ce
n,kv

n
eb,k

Cn
b,k(f̃

b
ib,k − ba,k)− (2ωn

ie,k + ωn
en,k)× vn

eb,k + gn
l,k

qn
b,k ⊗Δqk

0

0

cd,k
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Gk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
Cn

b,k 0 0 0 0 0

0 Cn
b,k 0 0 0 0

0 0 I3×3 0 0 0
0 0 0 I3×3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The position pe
eb, velocity vn

eb, and the quaternion qn
b are

predicted with measured accelerations f̃ b
ib and rotation rates

ωb
ib and the strapdown algorithm according to [1]. The

rotation matrices C rotate the vectors between the different

coordinate systems (b, e, n). The vectors ωn
ie and ωn

en are the

Earth’s rotation rate and the transport rate, respectively. The

gravitation is compensated within the accelerometer mea-

surements with the WELMEC model [16], which estimates

the local gravity gn
l . The new orientation results from a

change in angle ωb
nb,kΔt, represented here as the quaternion

Δq .

The remaining states are predicted as follows: The IMU

biases ba and bg are modeled as a random walk, according to

[17]. The two GNSS receiver parameters clock error cb and

clock drift cd are modeled as a first-order Gauss-Markov

process, according to [18]. The accelerometer noise wba

and gyroscope noise wbg
are given in the body frame. The

shape matrix G is therefore used to rotate the values into

the navigation frame [9].

The propagation of the orientation is processed using

orientation vectors within the filter, although the orientation

is represented as a quaternion in the state vector. Therefore,

G[3,2]wg corresponds only to a three-dimensional matrix, al-

though the quaternion in the state vector is four-dimensional.

For better comprehensibility, the conversion is omitted here

[19].

C. Measurement Models

1) GNSS: The GNSS update step processes pseudoranges

ρik and deltaranges dik of GPS and Galileo from a single

antenna. The measurement model is according to [13] and

calculates these measurements for each satellite i:(
ρik
dik

)
︸ ︷︷ ︸

zk

=

(
‖pe,i

es,k − pe
ea,k‖+ cb,k

(ee,ias,k)
�(ve,i

es,k − ve
ea,k) + cd,k

)
︸ ︷︷ ︸

hk(x)

+

(
νiρ,k
νid,k

)
.

(3)

The vector ee,ias,k is the normalized direction vector from the

antenna to the i-th satellite, νiρ and νid are the measurement
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Fig. 2: Schematic of UKF 1. The pseudorange (PR) and deltarange (DR) update is performed before the optical speed sensor

(Correvit) update if GNSS data is available. Update steps are skipped if no data is available. The state vector and covariance

matrix are updated in the update blocks according to the UKF theory.

noise of the pseudorange and deltarange, respectively, and

pe,i
es is the known position of each satellite. The position of

the main antenna is derived from the estimated position of

the body frame and the lever arm between the body frame

and the main antenna:

pe
ea,k = pe

eb,k +Ce
n,kC

n
b,kl

b
ba. (4)

The velocity of the i-th satellite ve,i
es and the velocity of the

main antenna ve
ea are calculated as follows:

ve
ea,k = Ce

n,k

(
vn
eb,k +Cn

b,k(ω
b
eb,k × lbba)

)
. (5)

2) Odometry: The research dumper is equipped with

wheel encoders and an articulation angle sensor. The mea-

surement model is derived from a kinematic vehicle model.

The comprehensive measurement model is not shown here

due to reasons of space. We, therefore, refer to [9].

3) Optical Speed Sensor: Optical speed sensors have the

benefit of slip-free measurements as the two-dimensional

velocity over ground is measured. The sensor used is a

Kistler Correvit S-Motion with a distance resolution of

<1mm. The measurement model is as follows [14]:

vs
es,k︸︷︷︸
zk

= Cs
b (C

b
n,kv

n
eb,k + ωb

ib,k × lbbs)︸ ︷︷ ︸
hk(x)

+νs,k. (6)

The matrices C rotate the velocity estimated by the navi-

gation filter into the sensor coordinate system denoted with

s. Lever arm effects due to the distance lbbs between the

two coordinate systems are compensated with the measured

IMU rotation rate ωb
ib,k. The variable νs,k describes the

measurement noise.

4) Barometer: The measurement model for the integration

of atmospheric pressure measurements b is derived from [20]

and gives the expected pressure bk for a given height he
eb,k

and a given temperature T :

bk︸︷︷︸
zk

= b0

(
1 +

kT(h
e
eb,k − he

eb0)

T

)− g0
RkT

︸ ︷︷ ︸
hk(x)

+νb,k. (7)

It allows for estimated changes in the height and, there-

fore, correction of the state vector. Whenever the GNSS

signal reception is interrupted, the current height he
eb0 and

atmospheric pressure b0 is stored and the measurement

model is activated. The atmospheric temperature gradient

kT = 6.5×10−3 Km−1, the ideal gas constant R =
287, 1 J kg−1 K−1 and gravitation gr = 9.81 m s−2 are

assumed to be constant. The variable νb,k describes the

measurement noise.

D. Single-epoch Fusion

The navigation solutions from the m local filters, each

consisting of the state vector x̂i and the corresponding

covariance matrix Pi, are fused as stated in [8]:

x̂f = Pf

m∑
i=1

P−1
i x̂i (8)

Pf =

(
m∑
i=1

P−1
i

)−1

. (9)

E. Initialization and Parametrization

The GNSS receiver output is used to get the initial

position, velocity, heading, clock bias, and drift. The IMU is

used to calculate the initial roll and pitch angles.

The IMU biases can be either obtained by averaging the

measurements over a few seconds or by setting them to zero.

The UKF covariance matrices Q0, RGNSS,0 and P0 are

initialized as described in [18], the covariance matrix of the

wheel odometry and the optical speed sensor as explained in
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[9] and [14], respectively, and the covariance matrix of the

barometer as described in [15].

III. EXPERIMENTAL EVALUATION

A. Hardware Setup

The proposed method in this work is validated with a

research dumper, shown in Fig. 3. The used IMU is a

3DM-Gx5-25 from LORD MicroStrain and the used GNSS

receiver is a Novatel PwrPak7 dual-antenna receiver. The

auxiliary antenna was only used to get a reference heading.

All wheels were equipped with a wheel encoder and a

reluctor wheel with 100 teeth. The optical speed sensor is

the Kistler S-Motion DTI. The algorithms were performed

on a programmable logic controller (Bachmann MH230).

B. Evaluation Protocol

The performance of the federated filter is validated using

the individual performance of UKF 1, UKF 2, and a filter

with all sensors integrated in a centralized architecture (like

the filter in Fig. 2).

For validation, a 190-second trajectory was driven in a

gravel pit. A GNSS-denied area was simulated by blocking

manually all GNSS signals for 90 seconds. Fig. 4 shows the

driven trajectory.

IMU

Correvit

Antennas

y

z

x

Wheel
encoder

Fig. 3: Research dumper used for evaluation (graphic from

[9]).

25 sec
50 sec

75 sec

100 sec 125 sec

150 sec

175 sec20 ft 
5 m 

Fig. 4: Birds-eye view of the driven trajectory in the gravel

pit. The data belongs to the GNSS receiver’s reference

solution (graphic from [9]).

The GNSS receiver in RTK-fix mode delivers the position,

speed, and heading as ground truth. The 2D position error

used to validate each filter is the Euclidean distance between

the filter and the receiver position.

IV. RESULTS AND DISCUSSION

Figure 5 shows the 2D position error and yaw angle error

of the analyzed filters. For the first 75 seconds up to the

section without GNSS, all filters behave almost identically

with regard to the position error. In the area without GNSS,

the wheel odometry-aided filter (UKF 2) performs worst.

After switching GNSS back on, all filters perform almost

equally well until a pothole appears. The optical sensor is

disturbed by the impact, whereas the wheel encoders aren’t.

The federated and centralized filters weight the odometry

and the Correvit measurements differently. From a purely

subjective point of view, the federated filter forms the mean

value between UKF 1 (Correvit) and UKF 2 (wheel odom-

etry). The centralized filter is partly better and partly worse

than UKF1 and UKF 2. Both, centralized filter and federated

filter, perform better when the pothole occurs compared to

UKF 1.

In terms of yaw angle error, the federated filter also lies in

the middle between the Correvit and odometry filters. The

centralized filter, on the other hand, weights the odometry

update higher and is therefore very close to the solution of

the odometry filter.

To summarize, it can be said that the federated architecture

reduces the influence of individual sensors on the overall

solution while allowing the creation of redundancies.

A. Limitations and Future Work

Tab. I lists important error values. Due to the overall

small error values of all filters, it is not possible to make

a clear determination on whether the federated filter is

superior or inferior. A future measurement run should be

more challenging for the optical sensor (e.g. potholes and

puddles) and the wheel odometry (e.g. wheel slip).

TABLE I: Position and heading errors of the four evaluated

filters (x: mean value, σ: standard deviation).

2D-error (m) Heading error (°)
Filter x σ x σ

UKF1 0,21 0,12 1,37 1,59

UKF 2 0,21 0,12 1,63 1,02

centralized 0,20 0,13 1,59 0,95

federated 0,19 0,12 1,36 1,15
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Fig. 5: Evaluation plots showing position and yaw angle er-

ror. The gray area indicates the simulated GNSS interruption.

V. CONCLUSION

Both architectures, the centralized and the federated, are

suitable for navigation in terms of accuracy. The odometry-

based and Correvit-based filters themselves have a central-

ized architecture and achieve a low position error. However,

if redundant sensors are to be fused, better performance can

be achieved with a cascaded architecture, as shown in the

evaluation. As only one test run was used to validate the

different integration architectures, further tests have to be

conducted.
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Abstract—We present a new approach for designing an asyn-
chronous control unit for a RISC-V processor using dual-rail
domino logic and a self-locking mechanism. The proposed method
is based on the observation that dual-rail domino logic can be
mapped to look-up tables in FPGAs. This allows for the design of
a self-locking asynchronous control unit that is both inherently
structurally safe and efficient. First we discuss the concept of
dual-rail domino logic and its advantages for asynchronous cir-
cuits. A self-locking mechanism is presented that can be used to
prevent asynchronous circuits from entering erroneous states. The
mechanism is based on the use of a pulse circuit that locks the
input, triggers a precharge and then an evaluate phase until it
acknowledges the outputs and unlocks the input. This ensures that
the circuit is in a stable state before it starts the computation.
Afterwards, we apply the proposed approach to the design of an
asynchronous control unit for a RISC-V processor. The control unit
is implemented using look-up tables and function stable circuits.
The result is a control unit that is both safe and efficient.

I. INTRODUCTION

Digital circuitry distinguishes between synchronous and asyn-

chronous circuits. Synchronous circuits use a common clock

signal to control circuit functions, while asynchronous circuits

use alternative synchronization methods instead of a global

clock. This alternative synchronization method results in in-

creased resistance to noise and other disturbances compared to

other circuit types. Synchronous circuits are commonly used in

microprocessor technology because they are easier to implement

and debug than asynchronous circuits. However, in certain cases,

such as when performance or power consumption is a concern,

asynchronous circuits may offer advantages. RISC-V is a novel

Instruction Set Architecture (ISA), proposed and designed by

Berkeley, that is rapidly gaining prominence on the scene. The

key concept behind this ISA is to enable the implementation of

a Reduced Instruction Set Computer (RISC) processor with a

load-store architecture without the need to pay royalties for its

use. [6] In addition, the ISA was designed with modularity in

mind. It is therefore possible to enable more features of the

processor architecture by including different ISA extensions.

Modularity and royalty-free have proven to be key concepts

for hardware developers, who are now more inclined to provide

solutions specifically tailored to a niche problem. RISC-V is still

in its infancy, and clearly behind the current market dominance

of the x86 and ARM ISA for the high-end embedded market in

System-on-a-chip (SoC) [1] with automotive applications, for

example. However, we are likely to see a growth of RISC-V

ISA.

In this paper, we show how an asynchronous controller is

designed which will control a RISC-V multicycle processor.

To achieve high switching speed with low power consumption,

dual-rail domino logic (DRDL) design will be used [4]. DRDL

stages consist of two output paths, called rails, with each a Pin

for F and F , which are organized to complement each other.

Dual-rail domino circuits are highly immune to noise and other

interference, making them suitable for various applications such

as microprocessor and field-programmable gate array (FPGA)

technology. This paper investigates the capabilities of domino

logic circuits in an FPGA and presents a technique for their

implementation in the overstated platform.

In order to guarantee the feasibility and safety of the design, a

low-level implementation is required. Our asynchronous design

requires the specification of design rules that deviate from the

standard approaches adopted clocked design. This automaton is

self-clocking and fault-tolerant due to the dual-rail approach. A

comparison with the clocked version highlights the advantages

of the self-clocking version. The complexity of the automaton

is manageable, using the necessary z-variables to define all the

states specified by the ISA. In addition, the design concept

is transferable to more complex applications. The pipeline has

been successfully tested and is confirmed to be free of glitches,

hazards and races.

II. STRUCTURE OBSERVATIONS OF DOMINO LOGIC

CIRCUITS

Domino logic circuits are created using domino gates that

have precharge PMOS for charging, n-complexes for function

realization, and NMOS transistors for evaluation. To prevent

the cascading follower stage from opening prematurely during

precharge, additional inverters are placed at the output since

function F generates a 0. A clock pulse controls the domino

inverter, which outputs a signal that can be 0 or 1 and is then

passed on to the next domino gate. In this section, we will briefly

review the individual structures on transistor level (TL), starting

with single-rail domino logic. We will then demonstrate how to

implement dual-rail domino logic circuits in a single look-up

table (LUT).
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A. Single-Rail Domino Logic in FPGA

First, we will examine a single-rail domino logic (SRDL)

circuit with a keeper on TL, as displayed in Figure 1. This is now

VDD

X

dc

B

A

F

Figure 1: Single Rail Domino Logic

mapped onto a multiplexer (MUX) structure of pass transistors,

which realizes a LUT, as shown in Figure 2. Because the lower

VDD

VDD

dc

B

A

F

Figure 2: Single-Rail Domino Logic mapped to LUT3

path for dc = 0 is to charge the inverter, all assignments

are mapped to 1. The structure was not drawn to include

this path for simplicity, but only the connection to VDD is

included. The node preceding the NMOS, which is controlled

by dc, can only be charged to VDD or go high-Z and hold

the charge. Therefore, this simplification accurately reflects the

structure. Moreover, the node X can solely be pulled over AB
to GND, meaning that the top path is the only one capable of

triggering the transition from 1 to 0. Hence, the bottom path

loads from 0 to 1 (Precharge), and the upper path discharges

from 1 to 0 (Evaluate). By implementing this simplification and

demonstrating solely the paths for the transitions, we achieve

the structure depicted in Figure 2 with the exception that the

transistor for Evaluate is closer to the output, as shown in

Figure 3. This structure can be replicated by exchanging the

control inputs of the LUT.

B. Dual-Rail-Domino Logic

If two complementary SRDL circuits are used, they can be

merged to create a dual-rail domino logic circuit. An illustration

VDD

VDD

dcBA

F

Figure 3: Transitions of SRDL mapped to LUT3

of a DRDL circuit at gate level as applied in the FPGA can

be viewed in Figure 4a. Here, we have constructed two SRDL

VDD

F F

VDD

X

dc

X

FF

(a) Dual Rail Domino Logic TL

F

M1

F

M2

X0

X1

X2

X3

X4

VDD

F

F

(b) DRDL as LUT6_2

Figure 4: Dual Rail Domino Logic

circuits with their corresponding functions F and F . These

circuits are built in parallel and governed by the same dc. It is

possible to implement the DRDL circuit in a XILINX ARTIX-

7 LUT6_2 with input X5 connected to VDD, which contains

two outputs F = O6 and F = O5, see Figure 4b [7]. A pulse

circuit is now connected to the input of the domino logic module

to implement a self-locking circuit (self-X), see Figure 5. The

&

Δ

VDD

nP

aP

P n

nP

P
En

R

dc

Figure 5: Pulse Circuit

self-X circuit self-locks when a pulse passes through, directly
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locking the input. It is only released again by the En pin once

the pulse line has passed once. If the pulse lacks sufficient

energy, no switching operation is triggered. To solve this issue

in FPGAs, a function stable circuit is utilized [2]. This circuit

freezes at 1 in the internal state and then sets the output of

the pulse circuit to HIGH (Evaluate) once a precharge delay

of Δ has passed. This remains the case until the pipeline is

completed, after which the input is unlocked again by the en
signal. Refer to Figure 6 for the implementation in the FPGA on

Gate Level (GL). The circuit self-locks once function stability

Δ

DL
�∼

D

D

p

r

en

dc

z

x

X Z z
z
y
δy
y

Figure 6: Self-Locked Dual-Rail Domino Logic on FPGA

is ensured, which is the case when τinv < τLUT of the LUT [2].

This stable self-locking design principle can be now applied to

pipelines in general. Function stability is ensured by limiting

the input combinations to the LUT for stable feedback. To

accomplish this, a Design Rule Check (DRC) was developed.

The DRC ensures function stability by comparing the verified

LUT assignments for feedback with that used in the current

design.

III. CONTROL UNIT FOR RISC-V ARCHITECTURE

The simplified instruction set at the core of RISC-V is small

and orthogonal, allowing for a thriving ecosystem of innovation.

This simplified approach reduces the hardware requirements and

improves overall performance by eliminating the complexity

and overhead associated with complex instruction sets. The

paper presents the design of a control unit for a 32-bit RISC-V

architecture.

A. Control Unit Design

The implementation of an asynchronous multicycle control

unit in the FPGA is demonstrated below. A multicycle unit was

chosen to fully utilize the benefits of asynchronicity by dividing

cycles and handling particularly long cycles separately. The

multicycle controller from [3] serves as our reference point for

the design. The GL representation of the automaton can be seen

in Figure 7. The state transfer function takes op-code variables

6:3 as inputs. The output function takes funct3, funct75, and the

zero flag as additional inputs. The corresponding state diagram

with the states of the multicycle processor control unit are shown

in Figure 8. [3]

CU

zero
funct75
funct3

op6:3

ctrout

Figure 7: Block Diagram of the Control Unit

S0 S1

S2

S3

S4

S5

S6 S8

S7

S9 S10

R

[0− 00] [0110] [0010] [1101] [1100]

[0000] [0100]

Figure 8: Automaton Graph

B. Control Unit

The control unit has 11 states, each of which generates

different outputs for different instructions. To understand the

different states and their function in the central processing unit

(CPU), please refer to [3]. It is designed as a Moore machine,

which needs more states than mealy machines in general. The

machine is coded as a multi-cycle machine, which means that

there are different cycles (different number of states to get back

to S0) for different instructions, e.g. the load word instruction

goes through 5 states (needs 5 cycles), while the branch-equal

(beq) instruction needs only 3 cycles. This results in different

path delays and especially for asynchronous architectures in

better performance. We have used only bits 6 to 3 of the opcode

(op6:3) as input, because they are all disjoint to each other, and

therefore each event can be controlled individually by four input

variables. The automaton is now designed as a dual-rail domino

logic pipeline circuit.

C. Pipelined Automaton

The automaton with constant instructions through all states

can be designed with a single self-X pipeline. The automaton is

coded one-hot (except for state [00000]) to make the pipeline as

easy to design as possible. Since the automaton has a maximum

of five runs, a pipeline with five states and five z-variables is

designed, see Figure 9.

Edge A and B from the opcode are A =
[
1 1 0 0

]
and

B =
[
0 1 - 0

]
∨
[
0 - 1 0

]
∨
[
1 1 0 1

]
.

The domino logic then simply passes the 1 for each state until

the final state is reached. The pipeline is designed to be function
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Figure 9: One-Hot encoded Pipeline

stable and self-locking, i.e. each incoming pulse locks the input

and sets the next stage only when en = 1 and an incoming

pulse P arrives. The stabilization is valid for each node and is

therefore not drawn. To simplify the pipeline, the automaton was

coded as a mealy machine, which means that the output function

also depends on the input. This is not a problem in this case

because the input is also locked by the self-locking mechanism

and will be stable until the automaton has run through the

pipeline once. Equation 1 to Equation 11 depict the equations

for the implemented pipeline.

f = (f4, f3, f2, f1, f0)

= ((F4, F 4), (F3, F 3), (F2, F 2), (F1, F 1), (F0, F 0)) (1)

F4 = X2X1 ∨X3X0 ∨X3X1 ∨X3X2X0 (2)

F 4 = X3X1X0 ∨X3X2X0 ∨X3X2X1X0 (3)

F3 = X3 ∨X2 ∨X1 ∨X0 (4)

F 3 = X3X2X1X0 (5)

F2 = F1 (6)

F 2 = F 1 (7)

F1 = F0 (8)

F 1 = F0 (9)

F0 = REQ (10)

F 0 = REQ (11)

The resulting pipeline can be seen in Figure 10. Each stage i
has outputs fi = (Fi, F i) which feed the next stage.

δ0

M1

δ1

M2

δ2

M3

δ3

M4

δ4

M5

req

dc

f0 f1 f2 f3 f4

x

Figure 10: Pipeline in GL

IV. IMPLEMENTATION

The complete control unit consists of the pulse circuit, the

DRDL pipeline and the completion detection to generate the

en-signal to unlock the input. The completion detection consists

of an exclusive-or (XOR) gate for each stage and evaluates after

each transition to a new state whether the outputs of the dual-

rail LUTs are complementary to each other. When all XOR

gates are 1, means all dual-rail stages have disjoint outputs,

enable is set to 1 and the input is unlocked. It exhibits the same

GL representation as in Figure 6. To realize our structures, we

have integrated the control unit in a given synchronized RISC-

V CPU and used an ARTY-A7 board with an ARTIX-7 FPGA

(XC7A35TICSG324-1L). The control unit was programmed in

VHDL at low level. and the device realization in Xilinx Vivado

can be seen in Figure 11.

Figure 11: Control Unit after Implementation step in Vivado

A. Implementation Results

Table I depicts the utilization report of the FPGA. The

Unit LUTs Registers Slice
Synchronous 15 16 6

Asynchronous 15 7 5

Table I: Used Ressources in FPGA

structure that was implemented was expected to occupy a larger

area due to the dual-rail approach [5]. However, the dual-rail

stages were successfully implemented within a single LUT,

resulting in no change in the number of LUTs. Furthermore, the

self-synchronization technique reduced the number of registers.

When dealing with larger projects, it is important to consider

the trade-off between area and other factors, such as clock

skew issues. Self-clocked pipelines reduce the need for complex

clock distribution networks and do not suffer from clock skew.

Another benefit of asynchronous circuits is performance and

power consumption. To understand the benefits of performance

different modules of the CPU can be fed by different clocks

and the overall performance can be optimized. Since our syn-

chronous CPU is clocked with one global clock line there is

no change in performance as of now. This will be a future

project. The dynamic power consumption of the asynchronous

automaton was approximately one-third that of the synchronous

automaton.

V. CONCLUSION AND FUTURE WORK

This paper presents a new approach for designing an asyn-

chronous control unit for a RISC-V processor using DRDL

and a self-locking mechanism. The approach offers several

advantages over traditional synchronous approaches, including
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safety and reliability, as the self-locking mechanism prevents the

circuit from hazards or races and the use of dual-rail technology

makes it resistant to glitches. Another advantage is constituted

by high switching speeds and low power consumption. Addi-

tionally, it is scalable and can easily be adapted to different

instruction sets and clocks. The feasibility of the proposed

approach was demonstrated by implementing the control unit in

an FPGA. The pipelined automaton was programmed in VHDL

at a low level, and its implementation in Vivado was successful.

The results indicate that the pipeline operates correctly and

efficiently. The proposed approach has the potential to be used

in a wide range of applications.

In future work, we plan to investigate the use of more asyn-

chronous components in the CPU. Request and acknowledge

signals will be used to communicate between different com-

ponents, further improving safety, reliability, and performance

of the architecture. We consider dividing the pipeline into

smaller steps to increase parallelism and improve performance.

To expand the use of asynchronous design, a computer-aided

design tool must be accessible to convert functionality into

secure structures.
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Abstract  
Novel and innovative technologies like automated and autonomous driving will provide solutions to pressing global 
issues related to traffic. Autonomous cars will contribute by optimizing traffic flows, resulting in a more efficient use of 
energy resources and infrastructure. In addition, they ensure better traffic regulation, which results in fewer casualties 
and more safety. To maintain a leading position in this sector, European car manufacturers must adapt to the needs of 
the changing market by addressing key technical challenges around autonomous driving. 
Radar systems are a basic prerequisite for automated and autonomous driving. However, the amount of radar sensors 
per car must increase from one to about ten in the future to allow for full autonomy. This, in turn, demands very cost-
effective solutions without compromising on their performance. Moreover, these sensors must be easily integrable in 
the car exterior, yet invisible to the eye of the customer. The alignment within the vehicle must be precise while the re-
placement shall be possible without significant effort. To address this need, new manufacturing technologies, materials 
and different integration strategies are required in the vehicle. The integration challenges in this application area of au-
tomotive radar are to be enabled by applying 3D-MID technology. 
3D-MID is a packaging and integration technology that allows for three-dimensional arrangements of components and 
great flexibility in the shape of the final module. In the past years it has matured from a pure research topic towards 
high technology readiness levels (TRLs) and is already explored and adopted in many domains. Also, for the automo-
tive sector 3D-MID is a promising solution. However, the usually rather conservative European car industry has not yet 
started to explore its possibilities, even though Europe is home to some of the word-leading companies and research 
organisations in this area. Therefore, the project MID4automotive is aiming to bridge the gap between the car manufac-
turers on one hand and the 3D-MID companies and experts on the other hand to help both industries to maintain and 
expand their leadership in their areas. 
The targeted innovation in this project is the adaptation of the technology towards its use in wireless automotive mod-
ules through the development of a radar sensor in 3D-MID technology that is directly integrated into the bumper of a 
car. This module aims to surpass the angular resolution of state-of-the-art radar modules by a factor of six. Moreover, 
the integration of bare-dies into 3D-MID technology as well the integration of fibre-optic components to allow for low-
loss interconnections of multiple radar sensors are targeted innovations in this project. 
Radar systems that cover the entire surroundings of a vehicle are a basic prerequisite for autonomous driving. Due to 
their current design, the installation of the radar systems is difficult. Particularly in the side and rear areas, space to 
mount these radar modules is not available. Furthermore, these modules are very complex in their mechanical construc-
tion, which increases the costs. The installation also requires mounting fixtures on the vehicle, which leads to a costly 
assembly and adjustment. Moreover, the bumper has a negative effect on the detection quality and accuracy due to scat-
tering and refraction of the radar signals. Finally, as a crucial performance criterium for autonomous driving, the angu-
lar domain in both elevation and azimuth needs to be improved creating so called imaging radars. This could be 
achieved by larger antenna arrays or coherent processing over multiple antenna front-ends distributed over the car. 
 
Keywords — 77GHz radar, permittivity, material characterisation, 3D circuit carrier, MID, corner radar. 
 
1 Introduction 
Just a few years ago, it seemed that autonomous driving 
was on the verge of production readiness and that an all-
encompassing autopilot was only a few years away. How-
ever, the hype has been followed by a period of disillu-
sionment as many challenges remain unresolved or inade-
quately addressed. In October 2023, for example, the Cal-

ifornia Department of Transportation withdrew the li-
cence for its fleet of autonomous vehicles from Cruise, a 
subsidiary of the car manufacturer General Motors, for an 
indefinite period due to a series of accidents [1]. This 
clearly shows that automated driving is an enormous chal-
lenge for the automotive industry. It is not a matter of pro-
totypes, but of validated series vehicles that have to drive 
safely and under control in a real traffic scenario.  
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Seamless detection of the car's surroundings is the key to 
safer automated driving. Basically 3 different methods 
can be used. Camera-based detection is the most popular 
and flexible method. In this case, cameras detect the vehi-
cle's surroundings in the visible and, if necessary, in the 
IR spectrum. In addition to the detection of traffic signs 
and lane-keep assistance, the system can also be used for 
the detection of various objects and their distance from 
the vehicle. The biggest disadvantage of camera-based 
systems is that the optics must always be kept clean from 
contamination. This is difficult to achieve with camera 
systems that face to the side or rear. Another disadvantage 
is that it is highly dependent on the weather conditions 
and the ambient light situation.
Lidar systems are another way of recording the surround-
ings [2]. Lidar emits pulses of light and calculates the dis-
tance from the time of flight in a similar way to a radar 
system. It is therefore not an imaging process but has the 
same limitations as camera-based systems regarding con-
tamination and visibility.
Radar technology is considered the most suitable sensor 
technology for detecting the vehicle's surroundings due to 
its viability for extreme environmental conditions and its 
ability to accurately measure distance and speed. Radar is 
also a cost-effective solution needed to cover Advanced 
Driver Assistance Systems (ADAS) at autonomy levels 
2+, 2 and 3+. The requirements as well as the number and 
position of the required sensors are listed in Table 1.

Level 2+
5 sensors

Front: 
1 short range
1 medium range
Rear:
1 short range
1 medium range
1 long range

Level 3+
7 or more 

All of the sensors named above for 
front and rear
Plus sensors on each side of the car 
for360° coverage

Level 4 
and beyond

Front: 
Short and medium range
Rear:
Short, medium and long range
Sides:
May include all sensing modalities 
including cameras, radar and lidar

Table 1: Autonomy levels and their corresponding sensor 
requirements [3]

From level 3 and above, systems are required that cover 
the sides as well as the long-range area to the rear of the 
vehicle, see figure 1. The latter radar systems in particular 
are difficult to integrate into a modern vehicle because of 
the insufficient installation space, especially for side-view 
radar. Integrating the radar systems into the sills and 
doors is very complex and expensive. So simpler and 

more cost-effective integration solutions need to be devel-
oped.

Figure 1: Radar Sensors for automated driving level 3+ [3]

2 New integration concept for a 
77GHz radar system

In today's vehicles, advanced driver assistance systems 
(ADAS) are mainly integrated in the front of the vehicle.
This is particularly useful for camera-based systems. 

They are easier to keep clean or can be mounted behind 
the windscreen. Lidar systems and radar sensors are usu-
ally installed in the front end, see figure 2. There is often 
enough space behind the bumper or in the radiator grille 
to mount the unit.

Figure 2: Sensors and cameras in a piloted Audi A7[Audi AG]
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The disadvantage of this classic approach is that the posi-
tion of the assistance systems is often determined by the 
space available and cannot be installed in the optimum 
position for best performance.

2.1 Direct surface integration with MID-
technology 

A new approach is being developed as part of the 
MID4automotive research project. In this project, the 
components are integrated directly onto the bumpers and 
plastic parts, without the need for a housing. Figure 3 il-
lustrates this concept. The radar chip is placed directly on 
the inside of the bumper. This allows the RX and TX con-
nections to be extremely short, by placing the chip very 
close to the antenna elements. The antenna elements are 
also integrated directly into the surface, with no air gap 
between the antenna and the bumper. This improves re-
flectivity and reduces scattering.
Two variations are possible:

on the outside of the bumper
on the inside of the bumper

The advantage of the position on the outside of the 
bumper is that the attenuation is minimised and the emit-
ted electromagnetic wave is less reflected and scattered. 
The disadvantage is that the antenna is directly exposed to 
mechanical and environmental influences such as stone-
chipping or contamination. For this reason, the antennas 
need to be additionally protected by special coatings. In 
addition, the RF signal must be routed from the inside of 
the bumper to the outside of the bumper. This requires 
structures (vias or couplers) that affect the signal trans-
mission characteristics.
If the antenna is placed on the inside of the bumper, it is 
well protected from the mechanical impact of external in-
fluences. In addition, the signal connection is simpler as 
there is no need for vias or couplers. However, the radia-
tion characteristics are degraded due to scattering and at-
tenuation of the electromagnetic wave by the bumper sub-
strate. 
Hence, there is still a need for investigation to determine 
which of the two constellations has the most advantages 
for practical use in a car.

Figure 3: Planar system design for direct integration into 
surfaces with MID technology

2.2 MID LDS lacquer technology 
This concept is implemented using so-called LDS lacquer 
technology. LDS refers to Laser Direct Structuring using 
a 1064nm laser [4]. A laser is used to activate the sub-
strate surface previously coated with LDS lacquer. This 
process removes some of the paint and creates a rough-
ened surface. The laser also heats the surface so that 
mixed oxides are reduced to copper seeds. Electroless 
plating deposits copper, nickel and gold on the activated 
areas [5]. The applied LDS lacquer is produced by Lack-
werke Peters. Figure 4 shows a test sample that was pro-
duced with the MID LDS-lacquer. The technology can 
also be used to produce very fine structures of less than 
100μm. This also allows BGAs and small SMD compo-
nents such as 0402 to be placed.

Figure 4: LDS lacquer test sample [Fraunhofer IEM]

The advantage of this process is that any existing compo-
nent can be functionalised with this LDS coating. This is 
important for car manufacturers because otherwise they 
would have to do a requalification when using new mate-
rials.
The application of LDS lacquer is very similar to the ap-
plication of automotive lacquer. This makes the technol-
ogy particularly suitable for automotive radar integration. 
After cleaning of the plastic surfaces, the first step is the 
application of a primer. The primer increases the surface 
energy. This improves the adhesion of the LDS lacquer to 
the plastic surface. 
Due to the various primers and pre-treatment methods, 
such as plasma activation, nowadays even difficult mate-
rials, such as HDPE (high density polyethylene), polypro-
pylene, EPDM and polyethylene, can be reliably coated. 
The final coating is applied with LDS lacquer after a suit-
able evaporation time. It is important that all coats are ap-
plied wet on wet to achieve the best possible adhesion. 
Figure 5 shows the result of the coating process.
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Figure 5: coated plastic parts with LDS lacquer

Afterwards, the paint is cured at approx. 50 to 60°C. As a 
result, the paint reaches final strength faster and residual 
solvents diffuse out of the lacquer faster. Subsequently, 
the coated component can be structured using a 50μm IR-
laser with a wavelength of 1064 nm [4]. Figures 6 illus-
trates the activation process inside the LPKF laser equip-
ment. The next step is to clean the components of any la-
ser ablation impurities which tend to stick to the surfaces 
in spite of the air suction.

Figure 6: Laser activation

After final electroless metallisation, the component is fin-
ished and can be assembled with other electronic compo-
nents. Figure 7 shows the conductors of an 3D shaped 
MID carrier in LDS lacquer technology.

Figure 7: Conductors on a 3D MID component

2.3 Assembly and integration on a sub-
strate carrier

After the concept and technology have been introduced in 
the previous sections, the mounting and bonding technol-
ogy used to integrate the radar chip into the plastic surface 
will be discussed in more detail.
The basic structure is illustrated in Figure 8. The chip is 
glued to the substrate. For better positioning, a recess or a 
mechanical stop is implemented. Gluing is achieved using 
a special UV-curing adhesive. The bond connection is 
made using a 25 micron aluminium bond. Figure 9 shows 
a demonstrator chip after this process.

Figure 8: Mounting and bonding concept

In the next iteration of the system, a 77 GHz photonic ra-
dar chip will be integrated, which requires an optical input 
signal. This signal is fed to the chip via a fibre optic cable. 
In order to achieve a high coupling efficiency, the fibre 
must be precisely guided onto the chip's optical link, 
which is only several μm thick. A holder for the fibre is 
therefore included in the design of the substrate, as shown 
in Figure 8. A cannula is then inserted into this sleeve to 
stabilise the fibre and guide it to the chip's optical link. 
On the chip, an additional 3D-structure is manufactured 
onto the optical couplers via a photonic wire bonder to in-
crease the precision of the fibre alignment. With the help 
of these guiding structures on the chip and the MID car-
rier, the fibre can be precisely aligned with the optical 
link under the microscope. 

Figure 9: Mounted and bonded demo chip on a MID-sub-
state (without photonic interconnect)
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After the fibre is aligned, the cannula is fixed in this posi-
tion with a fast curing adhesive. The next step is the so-
phisticated process of fibre gluing on the optical link. A 
small, defined amount of a special adhesive is applied to 
the exposed part of the fibre under a microscope. This ad-
hesive has the same optical index as the fibre. This mini-
mises reflections on the optical link from this optical glue 
connection. The exact and reproducible amount of adhe-
sive is applied with an automated dispenser. As soon as 
the adhesive has run down the fibre to the chip, it is im-
mediately cured using a high-power UV source at 405nm.

2.4 Integrated 77 GHz photonic radar 
transceiver

The utilized integrated photonic radar transceiver in fu-
ture module iterations is characterized in [6], [7]. It is fab-
ricated in IHP 250nm SiGe BiCMOS technology and sup-
ports optical signals in both O-band (1310 nm) and C-
band (1550 nm). The optical signal is generated in a re-
mote base station at 19.25 GHz and distributed coherently 
to both transmitter and receiver circuits. In the transmitter, 
the input signal is up converted to the 77 GHz band via a 
frequency quadrupler. In the receiver, the received radar 
signal is IQ down-converted coherently. The double-sided 
IF bandwidth is 1 GHz. The signal is then converted back 
to the optical domain via an off-chip lithium niobate 
(LiNbO3) Mach-Zehnder modulator (MZM). The system 
block diagram is shown in Figure 10. Transmitter and re-
ceiver require a combined power of 1670 mW from a 3.6 
V supply. The MID chip carriers must therefore be able to 
dissipate heat sufficiently. For this reason, cooling struc-
tures will be investigated in further design iterations. With 
the current glueing process, this poses a significant chal-
lenge. A switch to a dedicated transceiver system inte-
grated in low-power CMOS technology may alleviate the 
problem of heat dissipation. After successful integration 
of the radar chips onto the MID carrier, measurements 
will be performed to evaluate the impact of the MID sub-
strate on the chips’ high frequency performance.

3 Conclusion 
A novel concept for integrating 77 GHz radar in cars was 
presented, allowing direct integration of chips, conductors 
and antennas onto the bumper surface. MID technology 
makes this possible for the first time in this application 
segment. This will enable more powerful radar applica-
tions in the future by eliminating the need for bulky radar 
modules. The technology is currently in its early stages 
and will need to be continuously developed as part of the 
project. However, it has been demonstrated that a die can 
be connected directly to an MID surface.

Figure 10: Caption: Block diagram of integrated 77 GHz 
photonic radar transmitter (a) and receiver (b) circuit with 
optical receive path [7].

4 Future work 
The next step is to integrate and connect the photonic ra-
dar transceiver. The main focus here is on the connection 
of the optical fibres to the chip. New tools, methods and 
equipment must be developed to place the fibre correctly. 
Heat and RF performance of the module must be evalu-
ated. Once the radar chip has been successfully imple-
mented, the signal routing and antenna design will be pro-
gressed. In this context, the potential of this technology 
will also be explored. Figure 11 illustrates this by the ex-
ample of an integrated horn antenna with dielectric lens.

Figure 11: Concept of a horn antenna integrated in the 
bumper in MID-technology
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